Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carried mass coefficient

The strength properties of the composite are defined by belt width (Wb), cord pitch (Pc), cord diameter (Dc) and strength coefficient x strength grade (Kf-Rr). The weight properties of the composite are defined by the rubber density, belt width (Wb), carry cover thickness (Cc), pulley cover thickness (Cp), cord pitch (Pc), cord diameter (Dc) and mass coefficient (Km). [Pg.358]

The mass-transfer coefficient of Eq. (14-139) is carried as a product with interfacial area (giving a volumetric mass transfer coefficient) ... [Pg.1382]

The selectivity of a gel, defined by the incremental increase in distribution coefficient for an incremental decrease in solute size, is related to the width of the pore size distribution of the gel. A narrow pore size distribution will typically have a separation range of one decade in solute size, which corresponds to roughly three decades in protein molecular mass (Hagel, 1988). However, the largest selectivity obtainable is the one where the solute of interest is either totally excluded (which is achieved when the solute size is of the same order as the pore size) or totally included (as for a very small solute) and the impurities differ more than a decade in size from the target solute. In this case, a gel of suitable pore size may be found and the separation carried out as a desalting step. This is very favorable from an operational point of view (see later). [Pg.67]

A pulse of a racemic mixture (5 g each enantiomer) was carried out to check the adsorption model and to predict the mass transfer coefficient. The other model parameters used in simulation were = 0.4 and Pe = 1000. The mass transfer coefficient used to fit experimental and model predictions in the pulse experiment was k = 0.4 s k Model and experimental results are compared in Figs. 9-16 and 9-17. [Pg.244]

Wall-to-bed heat-transfer coefficients were also measured by Viswanathan et al. (V6). The bed diameter was 2 in. and the media used were air, water, and quartz particles of 0.649- and 0.928-mm mean diameter. All experiments were carried out with constant bed height, whereas the amount of solid particles as well as the gas and liquid flow rates were varied. The results are presented in that paper as plots of heat-transfer coefficient versus the ratio between mass flow rate of gas and mass flow rate of liquid. The heat-transfer coefficient increased sharply to a maximum value, which was reached for relatively low gas-liquid ratios, and further increase of the ratio led to a reduction of the heat-transfer coefficient. It was also observed that the maximum value of the heat-transfer coefficient depends on the amount of solid particles in the column. Thus, for 0.928-mm particles, the maximum value of the heat-transfer coefficient obtained in experiments with 750-gm solids was approximately 40% higher than those obtained in experiments with 250- and 1250-gm solids. [Pg.129]

In this process, the two streams flow countercurrently through the column and undergo a continuous change in composition. At any location are in dynamic rather than thermodynamic equilibium. Such processes are frequently carried out in packed columns, in which the liquid (or one of the two liquids in the case of a liquid-liquid extraction process) wets die surface of the packing, thus increasing the interfacial area available for mass transfer and, in addition, promoting high film mass transfer coefficients within each phase. [Pg.622]

Here the vector rj represents the centre of mass position, and D is usually averaged over several time origins to to improve statistics. Values for D can be resolved parallel and perpendicular to the director to give two components (D//, Dj ), and actual values are summarised for a range of studies in Table 3 of [45]. Most studies have found diffusion coefficients in the 10 m s range with the ratio D///Dj between 1.59 and 3.73 for calamitic liquid crystals. Yakovenko and co-workers have carried out a detailed study of the reorientational motion in the molecule PCH5 [101]. Their results show that conformational molecular flexibility plays an important role in the dynamics of the molecule. They also show that cage models can be used to fit the reorientational correlation functions of the molecule. [Pg.59]

A comparative study [10] is made for crystal-growth kinetics of Na2HP04 in SCISR and a fluidized bed crystallizer (FBC). The details of the latter cem be found in [11]. Experiments are carried out at rigorously controlled super-saturations without nucleation. The overall growth rate coefficient, K, are determined from the measured values for the initial mean diameter, t/po, masses of seed crystals before and after growth. The results show that the values for K measured in ISC are systematically greater than those in FBC by 15 to 20%, as can be seen in Table 2. On the other hand, the values for the overall active energy measured in ISC and FBC are essentially the same. [Pg.535]

The problem asks for a yield, so we identify this as a yield problem. In addition, we recognize this as a limiting reactant situation because we are given the masses of both starting materials. First, identify the limiting reactant by working with moles and stoichiometric coefficients then carry out standard stoichiometry calculations to determine the theoretical amount that could form. A table of amounts helps organize these calculations. Calculate the percent yield from the theoretical amount and the actual amount formed. [Pg.223]

Estimation of parameters. Model parameters in the selected model are then estimated. If available, some model parameters (e.g. thermodynamic properties, heat- and mass-transfer coefficient, etc.) are taken from literature. This is usually not possible for kinetic parameters. These should be estimated based on data obtained from laboratory expieriments, if possible carried out isothermal ly and not falsified by heat- and mass-transport phenomena. The methods for parameter estimation, also the kinetic parameters in complex organic systems, and for discrimination between models are discussed in more detail in Section 5.4.4. More information on parameter estimation the reader will find in review papers by Kittrell (1970), or Froment and Hosten (1981) or in the book by Froment and Bischoff (1990). [Pg.234]

Here va and va are the stoichiometric coefficients for the reaction. The formulation is easily extended to treat a set of coupled chemical reactions. Reactive MPC dynamics again consists of free streaming and collisions, which take place at discrete times x. We partition the system into cells in order to carry out the reactive multiparticle collisions. The partition of the multicomponent system into collision cells is shown schematically in Fig. 7. In each cell, independently of the other cells, reactive and nonreactive collisions occur at times x. The nonreactive collisions can be carried out as described earlier for multi-component systems. The reactive collisions occur by birth-death stochastic rules. Such rules can be constructed to conserve mass, momentum, and energy. This is especially useful for coupling reactions to fluid flow. The reactive collision model can also be applied to far-from-equilibrium situations, where certain species are held fixed by constraints. In this case conservation laws... [Pg.109]

Example 15.4 A reboiler is required to supply 0.1 krnol-s 1 of vapor to a distillation column. The column bottom product is almost pure butane. The column operates with a pressure at the bottom of the column of 19.25 bar. At this pressure, the butane vaporizes at a temperature of 112°C. The vaporization can be assumed to be essentially isothermal and is to be carried out using steam with a condensing temperature of 140°C. The heat of vaporization for butane is 233,000 Jkg, its critical pressure 38 bar, critical temperature 425.2 K and molar mass 58 kg krnol Steel tubes with 30 mm outside diameter, 2 mm wall thickness and length 3.95 m are to be used. The thermal conductivity of the tube wall can be taken to be 45 W-m 1-K 1. The film coefficient (including fouling) for the condensing steam can be assumed to be 5700 W m 2-K 1. Estimate the heat transfer area for... [Pg.344]

The reaction is carried out in close-loop reactor connected to a mass spectrometer for 1S02, 180160 and 1602 analyses as a function of time [38], The gases should be in equilibrium with the metallic surface (fast adsorption/desorption steps 1 and f ) If the bulk diffusion is slow (step 6) and the direct exchange (step 5) does occur at a negligible rate, coefficients of surface diffusion Ds can be calculated from the simple relationship between the number of exchanged atoms Ne and given by the model of circular sources developed by Kramer and Andre [41] ... [Pg.240]

Fig. 8. Self-diffusion coefficients of polyethylene chains as a function of molecular mass. The measurements were carried out at the same value of the monomeric friction coefficient. (Reprinted with permission from [48]. Copyright 1987 American Chemical Society, Washington)... Fig. 8. Self-diffusion coefficients of polyethylene chains as a function of molecular mass. The measurements were carried out at the same value of the monomeric friction coefficient. (Reprinted with permission from [48]. Copyright 1987 American Chemical Society, Washington)...
The draft-tube airlift bioreactor was studied using water-in-kerosene microemulsions [263], The effect of draft tube area vs. the top-section area on various parameters was studied. The effect of gas flow rates on recirculation and gas carry over due to incomplete gas disengagement were studied [264], Additionally, the effect of riser to downcomer volume was also studied. The effect of W/O ratio and viscosity was tested on gas hold-up and mass transfer coefficient [265], One limitation of these studies was the use of plain water as the aqueous phase in the cold model. The absence of biocatalyst or any fermentation broth from the experiments makes these results of little value. The effect of the parameters studied will greatly depend on the change in viscosity, hold-up, phase distribution caused due to the presence of biocatalyst, such as IGTS8, due to production of biosurfactants, etc., by the biocatalyst. Thus, further work including biocatalyst is necessary to truly assess the utility of the draft-tube airlift bioreactor for biodesulfurization. [Pg.129]

Comparing the development here to the accounting for the kinetics of mineral precipitation and dissolution presented in the previous chapter (Chapter 16), we see the mass transfer coefficients v and so on serve a function parallel to the coefficients v , etc., in Reaction 16.1. The rates of change in the mole number of each basis entry, accounting for the effect of each kinetic redox reaction carried in the simulation, for example,... [Pg.253]

What is the significance of the parameter fi = (k2C BLDAf5 / kL in the choice and the mechanism of operation of a reactor for carrying out a second-order reaction, rate constant k2, between a gas A and a second reactant B of concentration CBL in a liquid In this expression, DA is the diffusivity of A in the liquid and kL is the liquid-film mass transfer coefficient. What is the reaction factor and how is it related to /l ... [Pg.283]


See other pages where Carried mass coefficient is mentioned: [Pg.123]    [Pg.40]    [Pg.123]    [Pg.40]    [Pg.108]    [Pg.11]    [Pg.37]    [Pg.166]    [Pg.532]    [Pg.1424]    [Pg.423]    [Pg.284]    [Pg.440]    [Pg.281]    [Pg.44]    [Pg.135]    [Pg.130]    [Pg.331]    [Pg.653]    [Pg.774]    [Pg.299]    [Pg.560]    [Pg.597]    [Pg.221]    [Pg.649]    [Pg.569]    [Pg.139]    [Pg.159]    [Pg.222]    [Pg.78]    [Pg.24]    [Pg.357]    [Pg.138]   
See also in sourсe #XX -- [ Pg.108 ]




SEARCH



Carri

Carrie

Carry

Mass coefficient

© 2024 chempedia.info