Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carboxylic saponification

A selection of important anionic surfactants is displayed in table C2.3.1. Carboxylic acid salts or tire soaps are tire best known anionic surfactants. These materials were originally derived from animal fats by saponification. The ionized carboxyl group provides tire anionic charge. Examples witlr hydrocarbon chains of fewer tlran ten carbon atoms are too soluble and tliose witlr chains longer tlran 20 carbon atoms are too insoluble to be useful in aqueous applications. They may be prepared witlr cations otlrer tlran sodium. [Pg.2575]

Ester hydrolysis in base is called saponification, which means soap making Over 2000 years ago the Phoenicians made soap by heating animal fat with wood ashes Animal fat is rich m glycerol triesters and wood ashes are a source of potassium car bonate Basic hydrolysis of the fats produced a mixture of long chain carboxylic acids as their potassium salts... [Pg.853]

Potassium and sodium salts of long chain carboxylic acids form micelles that dissolve grease (Section 19 5) and have cleansing properties The carboxylic acids obtained by saponification of fats are called fatty acids... [Pg.853]

In base the tetrahedral intermediate is formed m a manner analogous to that pro posed for ester saponification Steps 1 and 2 m Figure 20 8 show the formation of the tetrahedral intermediate m the basic hydrolysis of amides In step 3 the basic ammo group of the tetrahedral intermediate abstracts a proton from water and m step 4 the derived ammonium ion dissociates Conversion of the carboxylic acid to its corresponding carboxylate anion m step 5 completes the process and renders the overall reaction irreversible... [Pg.865]

Section 20 11 Ester hydrolysis m basic solution is called saponification and proceeds through the same tetrahedral intermediate (Figure 20 5) as m acid catalyzed hydrolysis Unlike acid catalyzed hydrolysis saponification is irreversible because the carboxylic acid is deprotonated under the reac tion conditions... [Pg.876]

Section 21 7 The malonic ester synthesis is related to the acetoacetic ester synthesis Alkyl halides (RX) are converted to carboxylic acids of the type RCH2COOH by reaction with the enolate ion derived from diethyl mal onate followed by saponification and decarboxylation... [Pg.907]

Saponification (Section 20 11) Hydrolysis of esters in basic solution The products are an alcohol and a carboxylate salt The term means soap making and denves from the process whereby animal fats were converted to soap by heating with wood ashes... [Pg.1293]

Animal fats and vegetable oils are triacylglycerols, or triesters, formed from the reaction of glycerol (1,2, 3-propanetriol) with three long-chain fatty acids. One of the methods used to characterize a fat or an oil is a determination of its saponification number. When treated with boiling aqueous KOH, an ester is saponified into the parent alcohol and fatty acids (as carboxylate ions). The saponification number is the number of milligrams of KOH required to saponify 1.000 g of the fat or oil. In a typical analysis, a 2.085-g sample of butter is added to 25.00 ml of 0.5131 M KOH. After saponification is complete, the excess KOH is back titrated with 10.26 ml of0.5000 M HCl. What is the saponification number for this sample of butter ... [Pg.363]

One of the most sensitive tests of the dependence of chemical reactivity on the size of the reacting molecules is the comparison of the rates of reaction for compounds which are members of a homologous series with different chain lengths. Studies by Flory and others on the rates of esterification and saponification of esters were the first investigations conducted to clarify the dependence of reactivity on molecular size. The rate constants for these reactions are observed to converge quite rapidly to a constant value which is independent of molecular size, after an initial dependence on molecular size for small molecules. The effect is reminiscent of the discussion on the uniqueness of end groups in connection with Example 1.1. In the esterification of carboxylic acids, for example, the rate constants are different for acetic, propionic, and butyric acids, but constant for carboxyUc acids with 4-18 carbon atoms. This observation on nonpolymeric compounds has been generalized to apply to polymerization reactions as well. The latter are subject to several complications which are not involved in the study of simple model compounds, but when these complications are properly considered, the independence of reactivity on molecular size has been repeatedly verified. [Pg.278]

Saponification of alkyl peroxyesters yields alkyl hydroperoxides and carboxylic acids or their alkali metal salts. a-Ether-substituted peroxides can be hydrolyzed to the unsubstituted alkyl hydroperoxides, eg, tert-huty hydroperoxide from tert-huty 2-oxacyclohexyl peroxide [28627-46-5] (62) ... [Pg.105]

Carboxylate soaps are most commonly formed through either direct or indirect reaction of aqueous caustic soda, ie, alkaH earth metal hydroxides such as NaOH, with fats and oils from natural sources, ie, triglycerides. Fats and oils are typically composed of both saturated and unsaturated fatty acid molecules containing between 8 and 20 carbons randomly linked through ester bonds to a glycerol [56-81-5] backbone. Overall, the reaction of caustic with triglyceride yields glycerol (qv) and soap in a reaction known as saponification. The reaction is shown in equation 1. [Pg.150]

Chemically Modified Waxes. Hydrocarbon waxes of the microcrystaHine, polyethylene, and polymethylene classes are chemically modified to meet specific market needs. In the vast majority of cases, the first step is air oxidation of the wax with or without catalysts (11). The product has an acid number usuaHy no higher than 30 and a saponification number usuaHy no lower than 25. An alternative step is the reaction of the wax with a polycarboxyHc acid, eg, maleic, at high temperature (12). Through its carboxyl groups, the oxidised wax can be further modified in such reactions as saponification or esterification. Oxidised wax is easily emulsified in water through the use of surfactants or simple soaps, and is widely used in many coating and poHsh appHcations. [Pg.317]

Ba.sic Hydrolysis. Throughout most of history, soap was manufactured by boiling an ester with aqueous alkaU. In this reaction, known as saponification, the ester is hydroly2ed with a stoichiometric amount of alkaU. The irreversible formation of carboxylate anion drives the reaction to completion. [Pg.388]

Claisen ester condensation, 6, 279 Thiazolecarboxylic acid chlorides reactions, 6, 279-280 Thiazolecarboxylic acid hydrazides synthesis, 6, 280 Thiazolecarboxylic acids acidity, 6, 279 decarboxylation, 6, 279 reactions, S, 92 6, 274 Thiazole-2-carboxylic acids decarboxylation, S, 92 Thiazole-4-carboxylic acids stability, S, 92 Thiazole-5-carboxylic acids decarboxylation, S, 92 Thiazole-4,5-dicarboxylic acid, 2-amino-diethyl ester reduction, 6, 279 Thiazole-4,5-dicarboxylic acids diethyl ester saponification, 6, 279 Thiazolediones diazo coupling, 5, 59 Thiazoles, 6, 235-331 ab initio calculations, 6, 236 acidity, S, 49 acylation, 6, 256 alkylation, S, 58, 73 6, 253, 256 analytical uses, 6, 328 antifogging agents... [Pg.873]

In addition, Pfister and coworkers investigated 3-hydroxyflavone-6-carboxylic acids as histamine induced gastric secretion inhibitors. After condensing 3-acetyl-4-hydroxybenzoic acid (45) with a variety of aldehydes 46 to deliver the chalcones 47, these purified chalcones were then subjected to the standard AFO conditions to afford flavonols 48 in 51-80% yield. Subsequent alkylation of 48 with methyl iodide or isopropyl iodide followed by saponification of the corresponding esters gave the target compounds. [Pg.501]

The rate of saponification of ethyl 2-thenoate, in contrast to ethyl 3-thenoate, was found to be considerably slower than predicted from the pKa of the acid, showing that the reactivities of thiophenes do not parallel those of benzene. The first explanation, that this was produced by a steric effect of the ring sulfur similar to the case in or /lo-substituted benzenes and in ethyl 1-naphthoate, could not be upheld when the same effect was found in ethyl 2-furoate. It was later ascribed to a stereospecific acid strengthening factor, involving the proper relation of the carboxylic hydrogen and the heteroatom, as the rate of saponification of 2-thienylacrylic acid was in agreement with that predicted from the acid constants. ... [Pg.80]

This concept has also been applied to the acid-base equilibria of indole-2-carboxylic acids (15) and of coumarilic acids (16) and to the rates of saponification of their ethyl esters. The data were excellently... [Pg.252]

Lster hydrolysis occurs through a typical nucleophilic acyl substitution pathway in which hydroxide ion is the nucleophile that adds to the ester carbonyl group to give a tetrahedral intermediate. Loss of alkoxide ion then gives a carboxylic acid, which is deprotonated to give the carboxylate ion. Addition of aqueous HC1 in a separate step after the saponification is complete then pro-tonates the carboxylate ion and gives the carboxylic acid (Figure 21.17). [Pg.809]

Why is the saponification of an ester irreversible In other words, why doesn t treatment of a carboxylic acid with an alkoxide ion yield an ester ... [Pg.811]

Saponification (Section 21.6) An old term for the base-induced hydrolysis of an ester to yield a carboxylic acid salt. [Pg.1250]

A cursory inspection of key intermediate 8 (see Scheme 1) reveals that it possesses both vicinal and remote stereochemical relationships. To cope with the stereochemical challenge posed by this intermediate and to enhance overall efficiency, a convergent approach featuring the union of optically active intermediates 18 and 19 was adopted. Scheme 5a illustrates the synthesis of intermediate 18. Thus, oxidative cleavage of the trisubstituted olefin of (/ )-citronellic acid benzyl ester (28) with ozone, followed by oxidative workup with Jones reagent, affords a carboxylic acid which can be oxidatively decarboxylated to 29 with lead tetraacetate and copper(n) acetate. Saponification of the benzyl ester in 29 with potassium hydroxide provides an unsaturated carboxylic acid which undergoes smooth conversion to trans iodolactone 30 on treatment with iodine in acetonitrile at -15 °C (89% yield from 29).24 The diastereoselectivity of the thermodynamically controlled iodolacto-nization reaction is approximately 20 1 in favor of the more stable trans iodolactone 30. [Pg.239]

When the related saccharin derived sultam (R)-29 is converted into the (Z)-boron enolate and subsequently treated with aldehydes,. vy -diastereomers 30 result almost exclusively. Thus, the diasteromeric ratios, defined as the ratio of the major product to the sum of all other stereoisomers, surpass 99 1. Hydroperoxide assisted saponification followed by esterification provides carboxylic esters 31 with recovery of sultam 32106a. [Pg.503]


See other pages where Carboxylic saponification is mentioned: [Pg.352]    [Pg.317]    [Pg.262]    [Pg.161]    [Pg.125]    [Pg.132]    [Pg.157]    [Pg.147]    [Pg.185]    [Pg.208]    [Pg.27]    [Pg.81]    [Pg.105]    [Pg.34]    [Pg.49]    [Pg.171]    [Pg.172]    [Pg.180]    [Pg.237]    [Pg.906]   
See also in sourсe #XX -- [ Pg.109 , Pg.110 , Pg.135 , Pg.219 , Pg.223 , Pg.294 , Pg.344 , Pg.345 ]




SEARCH



Esters, carboxylic acid saponification equivalent

Saponification

© 2024 chempedia.info