Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carboxylic esters, base alcohols

The mechanism of the LiAlH4 reduction of carboxylic esters to alcohols (Figure 17.60) can be readily understood based on the discussions of Section 6.5.1. A tetrahedral intermediate A... [Pg.795]

The chloride of triflic acid (trifluoromethanesulfonyl chloride) is an effective sulfonylating agent Like triflic anhydride, it usually reacts with alcohols and other nucleophiles with the formation of the corresponding derivatives of tnflic acid [69] However, in some reactions, it acts as a chlorinating reagent [98] The reactions of tnfluoromethanesulfonyl chloride with 1,3-dicarbonyl compounds or some carboxylic esters in the presence of a base result m the formation of chlonnated products in high yields (equation 49)... [Pg.960]

When a carbonyl group is bonded to a substituent group that can potentially depart as a Lewis base, addition of a nucleophile to the carbonyl carbon leads to elimination and the regeneration of a carbon-oxygen double bond. Esters undergo hydrolysis with alkali hydroxides to form alkali metal salts of carboxylic acids and alcohols. Amides undergo hydrolysis with mineral acids to form carboxylic acids and amine salts. Carbamates undergo alkaline hydrolysis to form amines, carbon dioxide, and alcohols. [Pg.534]

The reaction between acyl halides and alcohols or phenols is the best general method for the preparation of carboxylic esters. It is believed to proceed by a 8 2 mechanism. As with 10-8, the mechanism can be S l or tetrahedral. Pyridine catalyzes the reaction by the nucleophilic catalysis route (see 10-9). The reaction is of wide scope, and many functional groups do not interfere. A base is frequently added to combine with the HX formed. When aqueous alkali is used, this is called the Schotten-Baumann procedure, but pyridine is also frequently used. Both R and R may be primary, secondary, or tertiary alkyl or aryl. Enolic esters can also be prepared by this method, though C-acylation competes in these cases. In difficult cases, especially with hindered acids or tertiary R, the alkoxide can be used instead of the alcohol. Activated alumina has also been used as a catalyst, for tertiary R. Thallium salts of phenols give very high yields of phenolic esters. Phase-transfer catalysis has been used for hindered phenols. Zinc has been used to couple... [Pg.482]

The scope of this reaction is similar to that of 10-21. Though anhydrides are somewhat less reactive than acyl halides, they are often used to prepare carboxylic esters. Acids, Lewis acids, and bases are often used as catalysts—most often, pyridine. Catalysis by pyridine is of the nucleophilic type (see 10-9). 4-(A,A-Dimethylamino)pyridine is a better catalyst than pyridine and can be used in cases where pyridine fails. " Nonbasic catalysts are cobalt(II) chloride " and TaCls—Si02. " Formic anhydride is not a stable compound but esters of formic acid can be prepared by treating alcohols " or phenols " with acetic-formic anhydride. Cyclic anhydrides give monoesterified dicarboxylic acids, for example,... [Pg.483]

The addition of dry HCl to a mixture of a nitrile and an alcohol in the absence of water leads to the hydrochloride salt of an imino ester (imino esters are also called imidates and imino ethers). This reaction is called the Pinner synthesisThe salt can be converted to the free imino ester by treatment with a weak base such as sodium bicarbonate, or it can be hydrolyzed with water and an acid catalyst to the corresponding carboxylic ester. If the latter is desired, water may be present from the beginning, in which case aqueous HCl can be used and the need for gaseous HCl is eliminated. Imino esters can also be prepared from nitriles with basic catalysts. ... [Pg.1183]

The whole range of carboxylic acids and alcohols can be reacted to form esters. They are found in a large number of natural and synthetic scents and perfumes because of their pleasant odor. Many are used as solvents for paints and resins. Esters are converted back into the original acids and alcohols hy reaction with strong bases in water in a process called saponification (soap formation). [Pg.67]

Imidazolides of aromatic sulfonic acids react much more slowly in alcoholysis reactions than the carboxylic acid imidazolides. Although the reaction with phenols is quantitative when a melt is heated to 100 °C for several hours, with alcohols under these conditions only very slight alcoholysis is observed. In the presence of 0.05 equivalents (catalytic amount) of sodium ethoxide, imidazole sodium, of NaNH2, however, imidazolides of sulfonic acids react with alcohols almost quantitatively and exothermically at room temperature in a very short time to form sulfonic acid esters (sulfonates). (If the ratio of sulfonic acid imidazolide to alcoholate is 1 2, ethers are formed see Chapter 17). The mechanism of catalysis by base corresponds to that operative in the synthesis of carboxylic esters by the imidazolide method. Because of the more pronounced nucleophilic character of alkoxide ions, sulfonates can also be prepared in good yield by alcoholysis of their imidazolides in the presence of hydroxide ions i.e., with alcoholic sodium hydroxide. 45 Examples of syntheses of sulfonates are presented below. [Pg.224]

Hydroxycarbonylation and alkoxycarbonylation of alkenes catalyzed by metal catalyst have been studied for the synthesis of acids, esters, and related derivatives. Palladium systems in particular have been popular and their use in hydroxycarbonylation and alkoxycarbonylation reactions has been reviewed.625,626 The catalysts were mainly designed for the carbonylation of alkenes in the presence of alcohols in order to prepare carboxylic esters, but they also work well for synthesizing carboxylic acids or anhydrides.137 627 They have also been used as catalysts in many other carbonyl-based processes that are of interest to industry. The hydroxycarbonylation of butadiene, the dicarboxylation of alkenes, the carbonylation of alkenes, the carbonylation of benzyl- and aryl-halide compounds, and oxidative carbonylations have been reviewed.6 8 The Pd-catalyzed hydroxycarbonylation of alkenes has attracted considerable interest in recent years as a way of obtaining carboxylic acids. In general, in acidic media, palladium salts in the presence of mono- or bidentate phosphines afford a mixture of linear and branched acids (see Scheme 9). [Pg.188]

Methyl esters undergo trans-esterification with the quaternary ammonium salts at high temperature and the reaction has been used with some effect for the preparation of, for example, n-butyl esters by heating the methyl ester with tetra-n-butylammo-nium chloride at 140°C [31]. Optimum yields (>75%) are obtained in HMPA or in the absence of a solvent. A two-step (one-pot) trans-esterification under phase-transfer catalysed conditions in which the carboxylate anion generated by initially hydrolysis of the ester is alkylated has been reported for Schiff s bases of a-amino acids [32] and for A-alkoxycarbonylmethyl [1-lactams [33]. Direct trans-esterification of methyl and ethyl esters with alcohols under basic catalytic conditions occurs in good yield in the presence of Aliquat [34, 35]. [Pg.91]

The hydrolysis of an ester to alcohol and acid (1) and the esterification of a carboxylic acid with an alcohol (2) are shown here as an example of the Sn2 mechanism. Both reactions are made easier by the marked polarity of the C=0 double bond. In the form of ester hydrolysis shown here, a proton is removed from a water molecule by the catalytic effect of the base B. The resulting strongly nucleophilic OH ion attacks the positively charged carbonyl C of the ester (la), and an unstable sp -hybridized transition state is produced. From this, either water is eliminated (2b) and the ester re-forms, or the alcohol ROH is eliminated (1b) and the free acid results. In esterification (2), the same steps take place in reverse. [Pg.14]

In the reaction, one mole of hydroxide generates one mole of alcohol and one mole of carboxylate ion from one mole of ester. Based on this stoichiometry (the mole relationship as defined by the balanced chemical equation), if the number of moles of base is known, then the amount of ester is known. [Pg.210]

As described previously, carboxylic acids may be used as solvents for halide or Lewis base-promoted CO reduction. However, these solvents have the disadvantage of forming the usually less desirable carboxylate esters rather than free alcohol products. Rate or selectivity advantages are not apparent in these solvents. [Pg.400]

Esters are produced by acid-catalysed reaction of carboxylic acids with alcohols, known as Fischer esterification. They are also obtained from acid chlorides, acid anhydrides and other esters. The preparation of esters from other esters in the presence of an acid or a base catalyst is called transesterification. All these conversions involve nucleophilic acyl suhstitu-tions (see Section 5.5.5). [Pg.98]

Several methods, all based on carbon monoxide or metal carbonyls, have been developed for converting an alkyl halide to a carboxylic acid or an acid derivative with the chain extended by one carbon.1603 When an alkyl halide is treated with SbCl5-S02 at -70°C, it dissociates into the corresponding carbocation (p. 166). If carbon monoxide and an alcohol are present, a carboxylic ester is formed by the following route 1604... [Pg.484]

The wide range of standard procedures that are available for the formation of carboxylic esters of primary and secondary alcohols in the presence of suitable acid catalysts is discussed in detail in Section 5.12.3, p. 695. Also included is the mild method for methyl ester formation from the carboxylic acid and diazomethane, and a method appropriate for sterically hindered esters involving the acid, a secondary or tertiary alkyl halide, and the non-nucleophilic base DBU (Expt 5.151). An example of the formation of a t-butyl ester is noted in Expt 6.165. [Pg.690]

Saponification is the base-mediated hydrolysis of an ester, yielding its component carboxylate salt and alcohol. Ammonolysis of esters gives amides. Esters react with Grignard reagents to give tertiary alcohols. With lithium aluminum hydride, on the other hand, they are reduced to primary alcohols. [Pg.187]

The reaction typically gives 60% to 70% of the maximum yield. The reaction is a reversible process. An ester reacting with water, giving the carboxylic acid and alcohol, is called hydrolysis it is acid catalyzed. The base-promoted decomposition of esters yields an alcohol and a salt of the carboxylic acid this process is called saponification. [Pg.338]

In the presence of alkyl halides and base, alkyltetracarbonylcobalt complexes are formed with Co2(CO)8 these species [RCo(CO)4] carbonylate a wide range of aryl halides or heterocyclic halides to various products, which depend upon the specific conditions. In the presence of alcohols, carboxylic esters are formed. Under phase transfer conditions and with iodomethane, mixtures of methyl ketone and carboxylic acid formation are realized (equation 207). In the presence of sodium sulfide or NaBH4 in water-Ca(OH)2 (equation 208) good amounts of double carbonylation are realized under very mild conditions412-414. [Pg.1339]

You can t make esters from carboxylic acids and alcohols under basic conditions because the base deprotonates the carboxylic acid (see p. 288). However, you can reverse that reaction and hydrolyse an ester to a carboxylic acid (more accurately, a carboxylate salt) and an alcohol. [Pg.291]

You remember, of course, that esters can be made from carboxylic acids and alcohols under acid catalysis, so you might expect them to use this type of method. On a small scale, it s usually better to convert the acid to an acyl chloride before coupling with an alcohol, using pyridine (or DMAP + Et3N) as a base this type of reaction might have been a reasonable choice too. [Pg.1053]

Review. New synthetic reactions based on the onium salts of aza-arenes have been reviewed (75 references). The reactions discussed involve activation of carboxylic acids or alcohols with 2-haIopyridinium, benzoxazolium, benzothiazolium, and pyridinium salts to afford 2-acyloxy or 2-alkoxy intermediates, which can be transformed into esters, amides, thiol esters, (macrocyclic) lactones, acid fluorides, olefins, allenes, carbodiimides, isocyanates, isothiocyanates, and nitriles under appropriate conditions. [Pg.122]

The cocatalyst made by the combination of an Al-alkyl and a Lewis base is actually not a simple binary system since the two components interact chemically giving rise to new products. In the case of carboxylic esters, it has been known for a long time 56) that the reaction with Al-alkyl yields Al-alkoxides from which alcohols are obtained by hydrolysis. Based on the numerous studies conducted in the last twenty years 57 72), it is known that the reaction occurs through the preliminary formation of an acid-base complex which, thereafter, undergoes rearrangement which is more or less rapid, depending on the reaction conditions. [Pg.20]


See other pages where Carboxylic esters, base alcohols is mentioned: [Pg.83]    [Pg.1128]    [Pg.870]    [Pg.52]    [Pg.43]    [Pg.168]    [Pg.277]    [Pg.420]    [Pg.213]    [Pg.664]    [Pg.87]    [Pg.213]    [Pg.276]    [Pg.332]    [Pg.796]    [Pg.288]    [Pg.57]    [Pg.1034]    [Pg.725]    [Pg.142]   
See also in sourсe #XX -- [ Pg.1769 ]




SEARCH



Alcoholic esters

Alcohols carboxylation

Bases. esters

Carboxylic esters, base

Ester-based

Esters alcohols

© 2024 chempedia.info