Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carboxylic esters preparation

Indanedioiie (III) may also be prepared by condensation of diethyl phthalate (V) with ethyl acetate in the presence of sodium ethoxide the resulting sodium 1 3-indanedione-2-carboxylic ester (VI) upon warming with sulphuric acid yields (HI). [Pg.994]

Perhaps the most extensively studied catalytic reaction in acpreous solutions is the metal-ion catalysed hydrolysis of carboxylate esters, phosphate esters , phosphate diesters, amides and nittiles". Inspired by hydrolytic metalloenzymes, a multitude of different metal-ion complexes have been prepared and analysed with respect to their hydrolytic activity. Unfortunately, the exact mechanism by which these complexes operate is not completely clarified. The most important role of the catalyst is coordination of a hydroxide ion that is acting as a nucleophile. The extent of activation of tire substrate througji coordination to the Lewis-acidic metal centre is still unclear and probably varies from one substrate to another. For monodentate substrates this interaction is not very efficient. Only a few quantitative studies have been published. Chan et al. reported an equilibrium constant for coordination of the amide carbonyl group of... [Pg.46]

Methylsulfinyl enolates are more recently developed d -reagents. They are readily prepared from carboxylic esters and dimsyl anion. Methanesulfenic acid can be eliminated thermally after the condensation has taken place. An example is found in Bartlett s Brefeldin synthesis (P.A. Bartlett. 1978). [Pg.65]

Asymmetric hydrogenation has been achieved with dissolved Wilkinson type catalysts (A. J. Birch, 1976 D. Valentine, Jr., 1978 H.B. Kagan, 1978). The (R)- and (S)-[l,l -binaph-thalene]-2,2 -diylblsCdiphenylphosphine] (= binap ) complexes of ruthenium (A. Miyashita, 1980) and rhodium (A. Miyashita, 1984 R. Noyori, 1987) have been prepared as pure atrop-isomers and used for the stereoselective Noyori hydrogenation of a-(acylamino) acrylic acids and, more significantly, -keto carboxylic esters. In the latter reaction enantiomeric excesses of more than 99% are often achieved (see also M. Nakatsuka, 1990, p. 5586). [Pg.102]

One route to o-nitrobenzyl ketones is by acylation of carbon nucleophiles by o-nitrophenylacetyl chloride. This reaction has been applied to such nucleophiles as diethyl malonatc[l], methyl acetoacetate[2], Meldrum s acid[3] and enamines[4]. The procedure given below for ethyl indole-2-acetate is a good example of this methodology. Acylation of u-nitrobenzyl anions, as illustrated by the reaction with diethyl oxalate in the classic Reissert procedure for preparing indolc-2-carboxylate esters[5], is another route to o-nitrobenzyl ketones. The o-nitrophenyl enamines generated in the first step of the Leimgruber-Batcho synthesis (see Section 2.1) are also potential substrates for C-acylation[6,7], Deformylation and reduction leads to 2-sub-stituted indoles. [Pg.14]

The main example of a category I indole synthesis is the Hemetsberger procedure for preparation of indole-2-carboxylate esters from ot-azidocinna-mates[l]. The procedure involves condensation of an aromatic aldehyde with an azidoacetate ester, followed by thermolysis of the resulting a-azidocinna-mate. The conditions used for the base-catalysed condensation are critical since the azidoacetate enolate can decompose by elimination of nitrogen. Conditions developed by Moody usually give good yields[2]. This involves slow addition of the aldehyde and 3-5 equiv. of the azide to a cold solution of sodium ethoxide. While the thermolysis might be viewed as a nitrene insertion reaction, it has been demonstrated that azirine intermediates can be isolated at intermediate temperatures[3]. [Pg.45]

Preparation of indole-2-carboxylate esters by the Hemetsberger method... [Pg.46]

The present method is a simple, one-step procedure employing commercially available or readily accessible starting materials. Other a-nitro carboxylic esters may be prepared in this way for example, dimethyl 2-nitropentanedioate was prepared in 45-50% yield,... [Pg.62]

Xanthates decompose at much lower temperatures than do carboxylic esters (100 to 250°), but their preparation is lengthy. ... [Pg.335]

Darzens reactions between the chiral imine 52 and a-halo enolates 53 for the preparation of nonracemic aziridine-2-carboxylic esters 54 (Scheme 3.17) were studied by Fujisawa and co-workers [61], It is interesting to note that the lithium enolate afforded (2K,3S)-aziridirie (2i ,3S)-54 as the sole product, whereas the zinc enolate give rise to the isomer (2S,3i )-54. The a-halogen did not seem to affect the stereoselectivity. [Pg.80]

More recently, Davis and co-workers developed a new method for the asymmetric syntheses of aziridine-2-carboxylates through the use of an aza-Darzens-type reaction between sulfinimines (N-sulfinyl imines) and a-haloenolates [62-66]. The reaction is highly efficient, affording cis- N-sulfmylaziridine-2-carboxylic esters in high yield and diastereoselectivity. This method has been used to prepare a variety of aziridines with diverse ring and nitrogen substituents. As an example, treatment of sulfinimine (Ss)-55 (Scheme 3.18) with the lithium enolate of tert-butyl bromoacetate gave aziridine 56 in 82% isolated yield [66],... [Pg.80]

FR900490 (264 Scheme 3.96), a new immunomodulator, has been prepared from aziridine-2-carboxylic ester 261 [146, 147]. This aziridine reacts with (S)-histi-dine (262) in the presence of 1 n sodium hydroxide, giving 263 in 31-44% yield... [Pg.108]

Recent optimization studies reveal that the yield of 2-(2-propenyl)-1,3,2-dioxaborolane-4,5-di-carboxylate esters (i.e., the tartrate ester modified allylboronates) is improved by using triiso-propyl borate as the borylating agent1. The improved yields are directly related to the increased efficiency of the preparation of the intermediate allylboronic acid. [Pg.261]

Corey s auxiliary reagent 10 is also applied in order to obtain a f/-2-bromo-3-hydroxy-carboxylic esters in enantiomeric purities of 91-98%. The a-bromo esters thus obtained are useful intermediates for the preparation of a-unsubstituted /Miydroxy esters as well as for 2-amino-3-hydroxy- and 3-amino-2-hydroxycarboxylates64a b. [Pg.483]

To aid in determining the number of carboxyl groups, prepare a derivative using trideuterated Methyl-8 (Pierce cat. no. 49200), using the same procedure previously given. Inject 1-2 pd of the trideuterated methyl ester separately or mix equal portions of the nondeuterated methyl ester with the trideuterated methyl ester, and inject 2 pd immediately into the GC/MS system. From the mass difference, it is easy to determine the number of carboxyl groups present. [Pg.177]

The preparation of enantiomerically enriched a-ketosulphoxides 272 was also based on a kinetic resolution involving the reaction of the carbanion 273 derived from racemic aryl methyl sulphoxides with a deficiency of optically active carboxylic esters 274334, (equation 151). The degree of stereoselectivity in this reaction is strongly dependent on the nature of both the group R and the chiral residue R in 274. Thus, the a-ketosulphoxide formed in the reaction with menthyl esters had an optical yield of 1.3% for R = Et. In the... [Pg.296]

A Diels-Alder reaction of arynes with 1,2,4-triazines 102 allows the preparation of isoquinolines substituted with electron-withdrawing groups in the nitrogen-containing ring. The isoquinoline-1-carboxylic esters bearing additional substituents are of particular interest because they are not readily available by the usual routes [100,101] (Scheme 2.42). [Pg.70]

This chapter covers not only nuclear and extranuclear quinoxahnecarboxylic acids (and anhydrides) but also the carboxylic esters, acyl halides, carboxamides, carbohydrazides, carbonitriles, carbaldehydes, and (ketonic) acyl derivatives of quinoxaline a few related speceis are also included. To avoid repetition, the interconversions of these quinoxaline derivatives are discussed only at the first opportunity thus the esterification of quinoxalinecarboxylic acids in covered as a reaction of carboxylic acids rather than as a preparative route to carboxylic esters, simply because the section on carboxylic acids precedes that on carboxylic esters. To minimize any confusion, appropriate cross-references have been inserted. [Pg.317]

The reaction between acyl halides and alcohols or phenols is the best general method for the preparation of carboxylic esters. It is believed to proceed by a 8 2 mechanism. As with 10-8, the mechanism can be S l or tetrahedral. Pyridine catalyzes the reaction by the nucleophilic catalysis route (see 10-9). The reaction is of wide scope, and many functional groups do not interfere. A base is frequently added to combine with the HX formed. When aqueous alkali is used, this is called the Schotten-Baumann procedure, but pyridine is also frequently used. Both R and R may be primary, secondary, or tertiary alkyl or aryl. Enolic esters can also be prepared by this method, though C-acylation competes in these cases. In difficult cases, especially with hindered acids or tertiary R, the alkoxide can be used instead of the alcohol. Activated alumina has also been used as a catalyst, for tertiary R. Thallium salts of phenols give very high yields of phenolic esters. Phase-transfer catalysis has been used for hindered phenols. Zinc has been used to couple... [Pg.482]

The scope of this reaction is similar to that of 10-21. Though anhydrides are somewhat less reactive than acyl halides, they are often used to prepare carboxylic esters. Acids, Lewis acids, and bases are often used as catalysts—most often, pyridine. Catalysis by pyridine is of the nucleophilic type (see 10-9). 4-(A,A-Dimethylamino)pyridine is a better catalyst than pyridine and can be used in cases where pyridine fails. " Nonbasic catalysts are cobalt(II) chloride " and TaCls—Si02. " Formic anhydride is not a stable compound but esters of formic acid can be prepared by treating alcohols " or phenols " with acetic-formic anhydride. Cyclic anhydrides give monoesterified dicarboxylic acids, for example,... [Pg.483]

As in 10-55 hydrazides and hydroxamic acids can be prepared from carboxylic esters, with hydrazine and hydroxylamine, respectively. Both hydrazine and hydroxylamine react more rapidly than ammonia or primary amines (the alpha effect, p. 445). Imidates, RC(=NH)OR, give amidines, RC(=NH)NH2. Lactones, when treated with ammonia or primary amines, give lactams. Lactams are also produced from y- and 5-amino esters in an internal example of this reaction. [Pg.510]

These reactions are most important for the preparation of acyl fluorides. " Acyl chlorides and anhydrides can be converted to acyl fluorides by treatment with polyhydrogen fluoride-pyridine solution" or with liquid HF at — 10°C. Formyl fluoride, which is a stable compound, was prepared by the latter procedure from the mixed anhydride of formic and acetic acids. Acyl fluorides can also be obtained by reaction of acyl chlorides with KF in acetic acid or with DAST. Carboxylic esters and anhydrides can be converted to acyl halides other than fluorides by the inorganic acid halides mentioned in 10-77, as well as with PhsPXa (X = Cl or but this is seldom done. Halide exchange can be carried out in a... [Pg.524]

It is obvious that many carboxylic acids of the formulas RCH2COOH and RR CHCOOH can be synthesized by this method (for some other ways of preparing such acids, see 10-106, 10-108, and 10-109). Another important example is the acetoacetic ester synthesis, in which Z is COOEt and Z is COCH3. In this case the product can be decarboxylated with acid or dilute base (12-38) to give a ketone or cleaved with concentrated base (12-41) to give a carboxylic ester and a salt of acetic acid ... [Pg.549]

The alkylation of activated halogen compounds is one of several reactions of trialkylboranes developed by Brown (see also 15-16,15-25,18-31-18-40, etc.). These compounds are extremely versatile and can be used for the preparation of many types of compounds. In this reaction, for example, an alkene (through the BR3 prepared from it) can be coupled to a ketone, a nitrile, a carboxylic ester, or a sulfonyl derivative. Note that this is still another indirect way to alkylate a ketone (see 10-105) or a carboxylic acid (see 10-106), and provides an additional alternative to the malonic ester and acetoacetic ester syntheses (10-104). [Pg.560]

For a list of preparations of ketones by the reaction of organometallic compounds with carboxylic esters, salts, anhydyrides, or amides, with references, see Ref. 568, pp. 685, 693. [Pg.670]

Organomercury compounds undergo a similar reaction. Alkyl and aryl Grignard reagents can be converted to carboxylic esters with Fe(CO)5 instead of CO. Amides have been prepared by the treatment of trialkyl or triarylboranes with CO and an imine, in the presence of catalytic amounts of cobalt carbonyl ... [Pg.801]

Ketones and carboxylic esters can be a hydroxylated by treatment of their enolate forms (prepared by adding the ketone or ester to LDA) with a molybdenum peroxide reagent (MoOs-pyridine-HMPA) in THF-hexane at -70°C. The enolate forms of amides and estersand the enamine derivatives of ketones can similarly be converted to their a hydroxy derivatives by reaction with molecular oxygen. The M0O5 method can also be applied to certain nitriles. Ketones have also been Qc hydroxylated by treating the corresponding silyl enol ethers with /n-chloroperoxy-... [Pg.915]

When iodine is the reagent, the ratio between the reactants is very important and determines the products. A 1 1 ratio of salt to iodine gives the alkyl halide, as above. A 2 1 ratio, however, gives the ester RCOOR. This is called the Simonini reaction and is sometimes used to prepare carboxylic esters. The Simonini reaction can also be carried out with lead salts of acids." A more convenient way to perform the Hunsdiecker reaction is by use of a mixture of the acid and mercuric oxide instead of the salt, since the silver salt must be very pure and dry and such pure silver salts are often not easy to prepare. [Pg.943]

The addition of dry HCl to a mixture of a nitrile and an alcohol in the absence of water leads to the hydrochloride salt of an imino ester (imino esters are also called imidates and imino ethers). This reaction is called the Pinner synthesisThe salt can be converted to the free imino ester by treatment with a weak base such as sodium bicarbonate, or it can be hydrolyzed with water and an acid catalyst to the corresponding carboxylic ester. If the latter is desired, water may be present from the beginning, in which case aqueous HCl can be used and the need for gaseous HCl is eliminated. Imino esters can also be prepared from nitriles with basic catalysts. ... [Pg.1183]


See other pages where Carboxylic esters preparation is mentioned: [Pg.58]    [Pg.25]    [Pg.58]    [Pg.25]    [Pg.167]    [Pg.258]    [Pg.116]    [Pg.196]    [Pg.119]    [Pg.27]    [Pg.336]    [Pg.632]    [Pg.486]    [Pg.488]    [Pg.496]    [Pg.510]    [Pg.565]    [Pg.567]    [Pg.783]    [Pg.998]    [Pg.998]    [Pg.1029]    [Pg.1184]   
See also in sourсe #XX -- [ Pg.82 , Pg.146 , Pg.342 , Pg.348 ]




SEARCH



Carboxylated preparation

Carboxylation preparation

Carboxylic preparation

Esters preparation

© 2024 chempedia.info