Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carboxylic esters, base

The acetoacetic ester condensation (involving the acylation of an ester by an ester) is a special case of a more general reaction term the Claisen condensation. The latter is the condensation between a carboxylic ester and an ester (or ketone or nitrile) containing an a-hydrogen atom in the presence of a base (sodium, sodium alkoxide, sodamide, sodium triphenylmethide, etc.). If R—H is the compound containing the a- or active hydrogen atom, the Claisen condensation may be written ... [Pg.477]

The main example of a category I indole synthesis is the Hemetsberger procedure for preparation of indole-2-carboxylate esters from ot-azidocinna-mates[l]. The procedure involves condensation of an aromatic aldehyde with an azidoacetate ester, followed by thermolysis of the resulting a-azidocinna-mate. The conditions used for the base-catalysed condensation are critical since the azidoacetate enolate can decompose by elimination of nitrogen. Conditions developed by Moody usually give good yields[2]. This involves slow addition of the aldehyde and 3-5 equiv. of the azide to a cold solution of sodium ethoxide. While the thermolysis might be viewed as a nitrene insertion reaction, it has been demonstrated that azirine intermediates can be isolated at intermediate temperatures[3]. [Pg.45]

If there is no phenyl substituent in the 3-position the amination ability decreases. The acyloxaziridine (104) yields only 11% of a semicarbazide derivative with piperidine. In the presence of strong bases an intramolecular amination competes. Compound (104) reacts with methoxide within a couple of seconds to give phenylhydrazine carboxylic ester (106), and with cyclohexylamine to give the substituted semicarbazide (107). A diaziridinone (105) is assumed to be the common intermediate, formed by an intramolecular reaction from deprotonated (104) (67CB2600). [Pg.210]

The chloride of triflic acid (trifluoromethanesulfonyl chloride) is an effective sulfonylating agent Like triflic anhydride, it usually reacts with alcohols and other nucleophiles with the formation of the corresponding derivatives of tnflic acid [69] However, in some reactions, it acts as a chlorinating reagent [98] The reactions of tnfluoromethanesulfonyl chloride with 1,3-dicarbonyl compounds or some carboxylic esters in the presence of a base result m the formation of chlonnated products in high yields (equation 49)... [Pg.960]

The formation of an enamine from an a,a-disubstituted cyclopentanone and its reaction with methyl acrylate was used in a synthesis of clovene (JOS). In a synthetic route to aspidospermine, a cyclic enamine reacted with methyl acrylate to form an imonium salt, which regenerated a new cyclic enamine and allowed a subsequent internal enamine acylation reaction (309,310). The required cyclic enamine could not be obtained in this instance by base isomerization of the allylic amine precursor, but was obtained by mercuric acetate oxidation of its reduction product. Condensation of a dihydronaphthalene carboxylic ester with an enamine has also been reported (311). [Pg.362]

Carboxylic esters 1 that have an a-hydrogen can undergo a condensation reaction upon treatment with a strong base to yield a /3-keto ester 2. This reaction is called the Claisen ester condensation or acetoacetic ester condensation, the corresponding intramolecular reaction is called the Dieckmann condensation ... [Pg.55]

The carbanionic species thus formed is protonated to give the final product 3. The use of an alkoxide as base leads to formation of a carboxylic ester as rearrangement product use of a hydroxide will lead to formation of a carboxylic acid salt ... [Pg.111]

Replacement of a benzene ring by its isostere, thiophene, is one of the more venerable practices in medicinal chemistry. Application of this stratagem to the NSAID piroxicam, gives tenoxicam, 136, a drug with substantially the same activity, nie synthesis of this compound starts by a multi-step conversion of hydroxy thiophene carboxylic ester 130, to the sulfonyl chloride 133. Reaction of that with N-methylglycinc ethyl ester, gives the sulfonamide 134. Base-catalyzed Claisen type condensation serves to cyclize that intermediate to the p-keto ester 135 (shown as the enol tautomer). The final product tenoxicam (136) is obtained by heating the ester with 2-aminopyridine [22]. [Pg.173]

Unlike regular aziridine-2-carboxylic esters, aziridine-2-carboxylic thioester 174 (Scheme 3.62) forms stable carbanions at the 2-position upon treatment with base [13b, 122]. Thus, electrophilic alkylations of aziridine 174 afforded products 175. The reactions were highly diastereoselective, affording 175 in moderate to good... [Pg.97]

The preparation of enantiomerically enriched a-ketosulphoxides 272 was also based on a kinetic resolution involving the reaction of the carbanion 273 derived from racemic aryl methyl sulphoxides with a deficiency of optically active carboxylic esters 274334, (equation 151). The degree of stereoselectivity in this reaction is strongly dependent on the nature of both the group R and the chiral residue R in 274. Thus, the a-ketosulphoxide formed in the reaction with menthyl esters had an optical yield of 1.3% for R = Et. In the... [Pg.296]

Reaction of a-sulphinyl carboxylic esters 421 with carbonyl compounds has usually been performed using a Grignard reagent as a base. No condensation products are obtained using t-butyllithium or sodium hydride367,496,497 (equation 251). The condensation products formed are convenient starting materials for the synthesis of a, p-unsaturated esters and /1-ketones497. [Pg.329]

Taft, following Ingold," assumed that for the hydrolysis of carboxylic esters, steric, and resonance effects will be the same whether the hydrolysis is catalyzed by acid or base (see the discussion of ester-hydrolysis mechanisms. Reaction 10-10). Rate differences would therefore be caused only by the field effects of R and R in RCOOR. This is presumably a good system to use for this purpose because the transition state for acid-catalyzed hydrolysis (7) has a greater positive charge (and is hence destabilized by —I and stabilized by +1 substituents) than the starting ester. [Pg.371]

The reaction between acyl halides and alcohols or phenols is the best general method for the preparation of carboxylic esters. It is believed to proceed by a 8 2 mechanism. As with 10-8, the mechanism can be S l or tetrahedral. Pyridine catalyzes the reaction by the nucleophilic catalysis route (see 10-9). The reaction is of wide scope, and many functional groups do not interfere. A base is frequently added to combine with the HX formed. When aqueous alkali is used, this is called the Schotten-Baumann procedure, but pyridine is also frequently used. Both R and R may be primary, secondary, or tertiary alkyl or aryl. Enolic esters can also be prepared by this method, though C-acylation competes in these cases. In difficult cases, especially with hindered acids or tertiary R, the alkoxide can be used instead of the alcohol. Activated alumina has also been used as a catalyst, for tertiary R. Thallium salts of phenols give very high yields of phenolic esters. Phase-transfer catalysis has been used for hindered phenols. Zinc has been used to couple... [Pg.482]

The scope of this reaction is similar to that of 10-21. Though anhydrides are somewhat less reactive than acyl halides, they are often used to prepare carboxylic esters. Acids, Lewis acids, and bases are often used as catalysts—most often, pyridine. Catalysis by pyridine is of the nucleophilic type (see 10-9). 4-(A,A-Dimethylamino)pyridine is a better catalyst than pyridine and can be used in cases where pyridine fails. " Nonbasic catalysts are cobalt(II) chloride " and TaCls—Si02. " Formic anhydride is not a stable compound but esters of formic acid can be prepared by treating alcohols " or phenols " with acetic-formic anhydride. Cyclic anhydrides give monoesterified dicarboxylic acids, for example,... [Pg.483]

Although more studies have been devoted to the mechanism of the acylation of amines with carboxylic esters than with other reagents, the mechanistic details are not yet entirely clear.In its broad outlines, the mechanism appears to be essentially Bac2. ° Under the normal basic conditions, the reaction is general base... [Pg.511]

Carboxylic esters where R is methyl or ethyl can be cleaved by heating with lithium iodide in refluxing pyridine or a higher boiling amine. " The reaction is useful where a molecule is sensitive to acid and base (so that 10-10 cannot be used) or where it is desired to cleave selectively only one ester group in a molecule containing two or more. For example, refluxing O-acetyloleanolic acid methyl ester... [Pg.521]

It is obvious that many carboxylic acids of the formulas RCH2COOH and RR CHCOOH can be synthesized by this method (for some other ways of preparing such acids, see 10-106, 10-108, and 10-109). Another important example is the acetoacetic ester synthesis, in which Z is COOEt and Z is COCH3. In this case the product can be decarboxylated with acid or dilute base (12-38) to give a ketone or cleaved with concentrated base (12-41) to give a carboxylic ester and a salt of acetic acid ... [Pg.549]

Ketones,nitriles,and carboxylic esters can be alkylated in the a position in a reaction similar to 10-104, ° but a stronger base must be employed, since only one activating group is present. Both lactones and lactams are similarly alkylated. [Pg.551]

Carboxylic esters can be treated with ketones to give p-diketones in a reaction that is essentially the same as 10-118. The reaction is so similar that it is sometimes also called the Claisen condensation, though this usage is unfortunate. A fairly strong base, such as sodium amide or sodium hydride, is required. Yields can be increased by the catalytic addition of crown ethers. Esters of formic acid (R H) give P-keto aldehydes. Ethyl carbonate gives P-keto esters. [Pg.571]

Other carbanionic groups, such as acetylide ions, and ions derived from a-methylpyridines have also been used as nucleophiles. A particularly useful nucleophile is the methylsulfinyl carbanion (CH3SOCHJ), the conjugate base of DMSO, since the P-keto sulfoxide produced can easily be reduced to a methyl ketone (p. 549). The methylsulfonyl carbanion (CH3SO2CH2 ), the conjugate base of dimethyl sulfone, behaves similarly, and the product can be similarly reduced. Certain carboxylic esters, acyl halides, and DMF acylate 1,3-dithianes (see 10-10. )2008 Qxj(jatjye hydrolysis with NBS or NCS, a-keto aldehydes or a-... [Pg.572]

When P-keto esters are treated with concentrated base, cleavage occurs, but is on the keto side of the CR2 group (arrow) in contrast to the acid cleavage mentioned on page 810. The products are a carboxylic ester and the salt of an acid. However, the... [Pg.812]

The addition of dry HCl to a mixture of a nitrile and an alcohol in the absence of water leads to the hydrochloride salt of an imino ester (imino esters are also called imidates and imino ethers). This reaction is called the Pinner synthesisThe salt can be converted to the free imino ester by treatment with a weak base such as sodium bicarbonate, or it can be hydrolyzed with water and an acid catalyst to the corresponding carboxylic ester. If the latter is desired, water may be present from the beginning, in which case aqueous HCl can be used and the need for gaseous HCl is eliminated. Imino esters can also be prepared from nitriles with basic catalysts. ... [Pg.1183]

In the presence of a strong base, the ot carbon of a carboxylic ester can condense with the carbonyl carbon of an aldehyde or ketone to give a P-hydroxy ester, which may or may not be dehydrated to the a,P-unsaturated ester. This reaction is sometimes called the Claisen reaction,an unfortunate usage since that name is more firmly connected to 10-118. In a modem example of how the reaction is used, addition of tert-butyl acetate to LDA in hexane at -78°C gives the lithium salt of ferf-butyl acetate, " (12-21) an enolate anion. Subsequent reaction a ketone provides a simple rapid alternative to the Reformatsky reaction (16-31) as a means of preparing P-hydroxy erf-butyl esters. It is also possible for the a carbon of an aldehyde or ketone to add to the carbonyl carbon of a carboxylic ester, but this is a different reaction (10-119) involving nucleophilic substitution and not addition to a C=0 bond. It can, however, be a side reaction if the aldehyde or ketone has an a hydrogen. [Pg.1224]

CN (2a,6a,8a,9aa)-l/7-Indole-3-carboxylic acid octahydro-3-oxo-2,6-methano-2/f-quinolizin-8-yl ester base... [Pg.700]

Several ester-based oils are suitable as lubricants [532,690], as are branched chain carboxylic esters [1588]. Tall oils can be transesterified with glycols [1536] or condensed with monoethanolamine [51]. [Pg.15]

In 2003, Bonini et al. reported a new synthesis of ferrocenyloxazolines based on an iodide-mediated ring expansion of A-ferrocenoyl-aziridine-2-carboxylic esters. The thus-formed ligands were successfully employed as palladium chelates for the test reaction, since they allowed the product to be formed in quantitative yields and good to high enantioselectivities (Scheme 1.69). According to the results, it seemed that the additional chiral centre present in the oxazoline backbone of these ligands did not play a major role for the asymmetric induction and the activity of the corresponding catalysts. [Pg.54]

Acylamino)-substituted carboxylate esters and amides can be alkylated with good anti-2,4 stereoselectivity using two equivalents of a strong base. The stereoselectivity is independent of the steric bulk of the remainder of the carboxylate structure. Propose a TS that is consistent with these observations. [Pg.1269]

Imidazolides of aromatic sulfonic acids react much more slowly in alcoholysis reactions than the carboxylic acid imidazolides. Although the reaction with phenols is quantitative when a melt is heated to 100 °C for several hours, with alcohols under these conditions only very slight alcoholysis is observed. In the presence of 0.05 equivalents (catalytic amount) of sodium ethoxide, imidazole sodium, of NaNH2, however, imidazolides of sulfonic acids react with alcohols almost quantitatively and exothermically at room temperature in a very short time to form sulfonic acid esters (sulfonates). (If the ratio of sulfonic acid imidazolide to alcoholate is 1 2, ethers are formed see Chapter 17). The mechanism of catalysis by base corresponds to that operative in the synthesis of carboxylic esters by the imidazolide method. Because of the more pronounced nucleophilic character of alkoxide ions, sulfonates can also be prepared in good yield by alcoholysis of their imidazolides in the presence of hydroxide ions i.e., with alcoholic sodium hydroxide. 45 Examples of syntheses of sulfonates are presented below. [Pg.224]

Hydroxycarbonylation and alkoxycarbonylation of alkenes catalyzed by metal catalyst have been studied for the synthesis of acids, esters, and related derivatives. Palladium systems in particular have been popular and their use in hydroxycarbonylation and alkoxycarbonylation reactions has been reviewed.625,626 The catalysts were mainly designed for the carbonylation of alkenes in the presence of alcohols in order to prepare carboxylic esters, but they also work well for synthesizing carboxylic acids or anhydrides.137 627 They have also been used as catalysts in many other carbonyl-based processes that are of interest to industry. The hydroxycarbonylation of butadiene, the dicarboxylation of alkenes, the carbonylation of alkenes, the carbonylation of benzyl- and aryl-halide compounds, and oxidative carbonylations have been reviewed.6 8 The Pd-catalyzed hydroxycarbonylation of alkenes has attracted considerable interest in recent years as a way of obtaining carboxylic acids. In general, in acidic media, palladium salts in the presence of mono- or bidentate phosphines afford a mixture of linear and branched acids (see Scheme 9). [Pg.188]

In the context of the preparation of a library of pyrazole-based cyclooxygenase II (COX-II) inhibitors, the Organ group has described the microwave-assisted decarboxylation of a pyrazole carboxylic ester with 20% sulfuric acid (Scheme 6.160 a) [49]. While the conventional protocol (reflux, 100 °C) required 96 h to provide a yield of 86%, full conversion could be achieved within 5 min at 200 °C under micro-wave heating, leading to an 88% isolated product yield. [Pg.211]


See other pages where Carboxylic esters, base is mentioned: [Pg.244]    [Pg.226]    [Pg.139]    [Pg.120]    [Pg.15]    [Pg.244]    [Pg.226]    [Pg.139]    [Pg.120]    [Pg.15]    [Pg.1128]    [Pg.488]    [Pg.551]    [Pg.570]    [Pg.783]    [Pg.869]    [Pg.870]    [Pg.1022]    [Pg.62]    [Pg.278]    [Pg.324]    [Pg.168]   


SEARCH



Base-labile carboxylic esters

Bases. esters

Carboxylic acid esters base-catalyzed hydrolysis

Carboxylic acids and esters as bases

Carboxylic esters, base alcohols

Carboxylic esters, base basic hydrolysis

Carboxylic esters, base catalyzed condensation

Carboxylic esters, base cleavage

Carboxylic esters, base condensation, with aldehydes

Carboxylic esters, base halides

Ester-based

© 2024 chempedia.info