Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Initiators hydrolysis

Rhenium hexafluoride [10049-17-9J, ReF, is a pale yeUow soHd at 0°C, but a Hquid at ambient temperature. In the presence of moisture it hydroly2es rapidly forming HF, Re02, and HRe04 (see Rheniumand rhenium compounds). It is not safe to store ReF in a glass trap or glass-lined container. Leaks in the system can initiate hydrolysis and produce HF. The pressure buildup causes the system to burst and an explosion may result. [Pg.233]

The extent of the initial hydrolysis depends on temperature and how the water is added. Hydrolysis is reduced at slower addition rates and lower temperatures. The hydrolysis subsequent to the initial fast reaction is slow, presumably because part of the acid is converted to fluorosulfate ions which hydrolyze slowly even at elevated temperatures. The hydrolysis in basic solution has also been studied (17). Under controlled conditions, hydrates of HSO F containing one, two, and four molecules of water have been observed (18,19). [Pg.248]

Amylase occurs in many plants, such as barley, wheat, rye, soy beans, and potatoes, where it is generally accompanied by some a-amylase. [ -Amylase initiates hydrolysis at the nonreducing end of an amylose or amylopectin chain, and removes maltose units successively until the reducing end of the molecule is encountered in amylose or a branch is met in amylopectin. ( -Amylase is used commercially in the preparation of maltose symps. After P-amylase hydrolysis of amylopectin there remains a P-amylase limit dextrin. ( -Amylase has been used as a probe of the fine stmcture of amylopectin (43-46). [Pg.342]

Enzyme—Heat—Enzyme Process. The enzyme—heat—enzyme (EHE) process was the first industrial enzymatic Hquefaction procedure developed and utilizes a B. subtilis, also referred to as B. amjloliquefaciens, a-amylase for hydrolysis. The enzyme can be used at temperatures up to about 90°C before a significant loss in activity occurs. After an initial hydrolysis step a high temperature heat treatment step is needed to solubilize residual starch present as a fatty acid/amylose complex. The heat treatment inactivates the a-amylase, thus a second addition of enzyme is required to complete the reaction. [Pg.290]

Hydroxides. The hydrolysis of uranium has been recendy reviewed (154,165,166), yet as noted in these compilations, studies are ongoing to continue identifying all of the numerous solution species and soHd phases. The very hard uranium(IV) ion hydrolyzes even in fairly strong acid (- 0.1 Af) and the hydrolysis is compHcated by the precipitation of insoluble hydroxides or oxides. There is reasonably good experimental evidence for the formation of the initial hydrolysis product, U(OH) " however, there is no direct evidence for other hydrolysis products such as U(OH) " 2> U(OH)" 2> U(OH)4 (or UO2 2H20). There are substantial amounts of data, particulady from solubiUty experiments, which are consistent with the neutral species U(OH)4 (154,167). It is unknown whether this species is monomeric or polymeric. A new study under reducing conditions in NaCl solution confirms its importance and reports that it is monomeric (168). 8olubihty studies indicate that the anionic species U(OH) , if it exists, is only of minor importance (169). There is limited evidence for polymeric species such as Ug(OH) " 25 (1 4). [Pg.326]

The initial hydrolysis of the xanthate in aqueous solutions at room temperature is characterized by the following reaction involving potassium ethyl xanthate ... [Pg.362]

A further observation is the fact that differences in rates of nitration between the reagents prepared at different temperatures tended to zero as the water concentration of the added nitric acid was decreased to zero73. It has been argued that, since the acid-catalysed hydrolysis of acetic anhydride must be very rapid at 25 °C and removes water which initially competes with acetic anhydride and acetyl nitrate for protons, this removal permits equilibria (30) and (31) to be displaced towards products. The more anhydrous the nitric acid, the less important is this initial hydrolysis of the acetic anhydride and so the difference in the nitrating power of the differently prepared mixtures becomes less. When reagents are mixed at low temperatures, the hydrolysis of the anhydride is very slow, but once this is accomplished, formation of the protonated acetyl nitrate and subsequent nitration is rapid as observed73. [Pg.36]

Initial hydrolysis would therefore lead to further hydrolysis and pH drop in storage tanks, resulting in a product that is difficult to recover and may cause irreparable damage (corrosion) in tanks, pipelines, and pumps. Therefore the pH must be kept high (9-11) to avoid acid material entering bulk storage (steep titration curve). If for product formulation requirements a product of pH 6-7 is essential, the use of buffers, e.g., phosphoric acid or citric acid, is recommended. [Pg.669]

When acidic or latent acidic excipients (anhydrides) are incorporated into the polymer to control erosion rate, the polymers become quite sensitive to moisture and heat and must be processed in a dry environment. A rigorous exclusion of moisture is particularly important with materials that are designed to erode in less than 24 hr. Such materials may contain up to 5 wt% of an acidic catalyst and are analogous to a "loaded gun" in that even the slightest amount of moisture will initiate hydrolysis at the elevated processing temperatures. ... [Pg.150]

Phosphoramidate analogues of dideoxyribonucleoside phosphates (26) and trideoxyribonucleoside phosphates are acid labile and can be hydrolysed enzymically. Snake venom phosphodiesterase cleaves (26) to thymidine and 5 -deoxy-5 -aminothymidine (27 R = H). The latter presumably arises by spontaneous decomposition of the phosphoramidate (27 R = PO3H2) and P—O fission must have occurred during the initial hydrolysis. With acid or spleen phosphodiesterase, (26) gave Tp and (27 R = H), i.e. P—N fission occurred. [Pg.131]

In our previous work [63], we studied the hydrolysis kinetics of lipase from Mucor javanicus in a modified Lewis cell (Fig. 4). Initial hydrolysis reaction rates (uri) were measured in the presence of lipase in the aqueous phase (borate buffer). Initial substrate (trilinolein) concentration (TLj) in the organic phase (octane) was between 0.05 and 8 mM. The presence of the interface with octane enhances hydrolysis [37]. Lineweaver-Burk plots of the kinetics curve (1/Uj.] = f( /TL)) gave straight lines, demonstrating that the hydrolysis reaction shows the expected kinetic behavior (Michaelis-Menten). Excess substrate results in reaction inhibition. Apparent parameters of the Michaelis equation were determined from the curve l/urj = f /TL) and substrate inhibition was determined from the curve 1/Uj.] =f(TL) ... [Pg.570]

Typical hydrolysis curves for a variety of celluloses are shown in Fig. 2. As has been noted by various investigators,9i20,21 the curves indicate rapid initial hydrolysis followed by a slower hydrolysis and are... [Pg.125]

Methyl esters undergo trans-esterification with the quaternary ammonium salts at high temperature and the reaction has been used with some effect for the preparation of, for example, n-butyl esters by heating the methyl ester with tetra-n-butylammo-nium chloride at 140°C [31]. Optimum yields (>75%) are obtained in HMPA or in the absence of a solvent. A two-step (one-pot) trans-esterification under phase-transfer catalysed conditions in which the carboxylate anion generated by initially hydrolysis of the ester is alkylated has been reported for Schiff s bases of a-amino acids [32] and for A-alkoxycarbonylmethyl [1-lactams [33]. Direct trans-esterification of methyl and ethyl esters with alcohols under basic catalytic conditions occurs in good yield in the presence of Aliquat [34, 35]. [Pg.91]

The stomach secretes pepsinogens, which are inactive proteolytic enzymes, and protons - the high concentration of which initiates hydrolysis of the pepsinogens to form active pepsins, which then continue their own activation, via an autocatalytic, hydrolysis (Appendix 4.1). [Pg.70]

In a preliminary step, adjacent ester groups undergo initial hydrolysis or alcoholysis, by the base, to the oxide anion. This step is reasonable for carboxylic esters, which are rapidly hydrolyzed under the conditions usually employed, but is rather more surprising for sulfonic esters, which are usually hydrolyzed only slowly by the nucleophilic attack on sulfur required for this reaction. With these disulfonic esters, the ease of hydrolysis has been explained by the inductive effect of the adjacent sulfonyloxy group.7... [Pg.111]


See other pages where Initiators hydrolysis is mentioned: [Pg.302]    [Pg.14]    [Pg.549]    [Pg.130]    [Pg.222]    [Pg.227]    [Pg.30]    [Pg.41]    [Pg.174]    [Pg.200]    [Pg.194]    [Pg.569]    [Pg.274]    [Pg.125]    [Pg.111]    [Pg.188]    [Pg.181]    [Pg.74]    [Pg.46]    [Pg.184]    [Pg.93]    [Pg.889]    [Pg.143]    [Pg.149]    [Pg.154]    [Pg.29]    [Pg.241]    [Pg.72]    [Pg.87]    [Pg.18]    [Pg.331]    [Pg.249]    [Pg.339]    [Pg.14]    [Pg.378]   
See also in sourсe #XX -- [ Pg.52 ]




SEARCH



© 2024 chempedia.info