Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonyl compounds enolate alkylation

Still another possibility in the base-catalyzed reactions of carbonyl compounds is alkylation or similar reaction at the oxygen atom. This is the predominant reaction of phenoxide ion, of course, but for enolates with less resonance stabilization it is exceptional and requires special conditions. Even phenolates react at carbon when the reagent is carbon dioxide, but this may be due merely to the instability of the alternative carbonic half ester. The association of enolate ions with a proton is evidently not very different from the association with metallic cations. Although the equilibrium mixture is about 92 % ketone, the sodium derivative of acetoacetic ester reacts with acetic acid in cold petroleum ether to give the enol. The Perkin ring closure reaction, which depends on C-alkylation, gives the alternative O-alkylation only when it is applied to the synthesis of a four membered ring ... [Pg.226]

The prime functional group for constructing C-C bonds may be the carbonyl group, functioning as either an electrophile (Eq. 1) or via its enolate derivative as a nucleophile (Eqs. 2 and 3). The objective of this chapter is to survey the issue of asymmetric inductions involving the reaction between enolates derived from carbonyl compounds and alkyl halide electrophiles. The addition of a nucleophile toward a carbonyl group, especially in the catalytic manner, is presented as well. Asymmetric aldol reactions and the related allylation reactions (Eq. 3) are the topics of Chapter 3. Reduction of carbonyl groups is discussed in Chapter 4. [Pg.71]

Addition of carbon nucleophiles to the C=C bond of a compound la,b includes reactions of enolizable carbonyl compounds, enol ethers, and ena-mines, as well as lithium alkyls and zinc alkyls. Condensation of the enolizable ketone 68 with la,b (M = Cr, W)26 is induced, for example, by catalytic amounts of triethylamine in pentane and under these conditions affords a 90% yield of crystalline pyranylidene complex 57 directly from the reaction mixture.102 This reaction proceeds via the 2-ethoxy-l-metallatriene L, which, because of the presence of triethylamine, rapidly undergoes ring closure to the pyranylidene (pyrylium ylide) complex 69 by 1,6-elimination of ethanol (Scheme 22). Chromanylidene complexes 71 are obtained from condensation of a /3-tetraIone 70 (R = H, OMe) with compound 1a,b. [Pg.188]

Imine anions are superior to the corresponding enolate anions of the parent carbonyl compounds in alkylation reactions because they give only monoalkylated products of predictable regioselectivity. They can be prepared from aldehyde imines as well as from ketone imines by deprotonation with EtMgBr, LDA, or t-BuLiA ... [Pg.236]

If boranes (K. Utimoto, 1973 H.C. Brown, 1975, 1980 A. Pelter, 1979) are used as donor synthons for the alkylation of a, -unsatarated carbonyl compounds, no enolate anion is formed, and the, 8-position of the C=C bond is the only reaction site. [Pg.21]

Ordinarily nucleophilic addition to the carbon-carbon double bond of an alkene is very rare It occurs with a p unsaturated carbonyl compounds because the carbanion that results IS an enolate which is more stable than a simple alkyl anion... [Pg.777]

Titanium(IV) is a powerful but selective Lewis acid which can promote the coupling of allylsilanes with carbonyl compounds and derivatives In the presence of titanium tetrachlonde, benzalacetone reacts with allyltnmethylsilane by 1,4-addition to give 4-PHENYL-6-HEPTEN-2-ONE. Similarly, the enol silyl ether of cyclopentanone is coupled with f-pentyl chloride using titanium tetrachlonde to give 2-(tert-PENTYL)CYCLOPENTANONE, an example of a-tert-alkylation of ketones. [Pg.225]

In the presence of strong bases, carbonyl compounds form enolate ions, which may be employed as nucleophilic reagents to attack alkyl halides or other suitably electron-deficient substrates giving carbon-carbon bonds. (The aldol and Claisen condensations... [Pg.87]

The Sn2 alkylation reaction between an enolate ion and an alkyl halide is a powerful method for making C-C bonds, thereby building up larger molecules from smaller precursors. We ll study the alkylation of many kinds of carbonyl compounds in Chapter 22. [Pg.692]

Alpha hydrogen atoms of carbonyl compounds are weakly acidic and can be removed by strong bases, such as lithium diisopropylamide (LDA), to yield nucleophilic enolate ions. The most important reaction of enolate ions is their Sn2 alkylation with alkyl halides. The malonic ester synthesis converts an alkyl halide into a carboxylic acid with the addition of two carbon atoms. Similarly, the acetoacetic ester synthesis converts an alkyl halide into a methyl ketone. In addition, many carbonyl compounds, including ketones, esters, and nitriles, can be directly alkylated by treatment with LDA and an alkyl halide. [Pg.866]

There is no simple answer to this question, but the exact experimental conditions usually have much to do with the result. Alpha-substitution reactions require a full equivalent of strong base and are normally carried out so that the carbonyl compound is rapidly and completely converted into its enolate ion at a low temperature. An electrophile is then added rapidly to ensure that the reactive enolate ion is quenched quickly. In a ketone alkylation reaction, for instance, we might use 1 equivalent of lithium diisopropylamide (LDA) in lelrahydrofuran solution at -78 °C. Rapid and complete generation of the ketone enolate ion would occur, and no unreacled ketone would be left so that no condensation reaction could take place. We would then immediately add an alkyl halide to complete the alkylation reaction. [Pg.881]

Alkylation (Sections 8.8, 16.3, 18.2. 22.7) Introduction of an alkyl group onto a molecule. For example, aromatic rings can be alkylated to yield arenes, and enolate anions can be alkylated to yield a-substituted carbonyl compounds. [Pg.1235]

Assuming that a carbonyl compound 1 with a substituent Y (which may be either a heteroatomic substituent or an alkyl group) forms enolate 2 exclusively, and that the aldehyde 3 functions as the only carbonyl-active component12, four stereoisomeric products 4a, 4b, 5a, 5 b may result. [Pg.453]

Iron-acyl enolates such as 1, 2, and 3 react readily with electrophiles such as alkyl halides and carbonyl compounds (see Houben-Weyl, Vol. 13/9a p418). The reactions of these enolatc species with alkyl halides and similar electrophiles are discussed in Section D.1.1.1.3.4.1.3. To date, only the simple enolates prepared by a-deprotonation of acetyl and propanoyl complexes have been reacted with ketones or aldehydes. [Pg.517]

Silyl enol ethers and silyl ketene acetals also offer both enhanced reactivity and a favorable termination step. Electrophilic attack is followed by desilylation to give an a-substituted carbonyl compound. The carbocations can be generated from tertiary chlorides and a Lewis acid, such as TiCl4. This reaction provides a method for introducing tertiary alkyl groups a to a carbonyl, a transformation that cannot be achieved by base-catalyzed alkylation because of the strong tendency for tertiary halides to undergo elimination. [Pg.863]

Domino transformations combining two consecutive anionic steps exist in several variants, but the majority of these reactions is initiated by a Michael addition [1]. Due to the attack of a nucleophile at the 4-position of usually an enone, a reactive enolate is formed which can easily be trapped in a second anionic reaction by, for example, another n,(5-urisalurated carbonyl compound, an aldehyde, a ketone, an inline, an ester, or an alkyl halide (Scheme 2.1). Accordingly, numerous examples of Michael/Michael, Michael/aldol, Michael/Dieckmann, as well as Michael/SN-type sequences have been found in the literature. These reactions can be considered as very reliable domino processes, and are undoubtedly of great value to today s synthetic chemist... [Pg.48]

As discussed in Chapter 9, various nucleophiles can be introduced at the ortho position of nitroarenes via the VNS process. This provides a useful strategy for the synthesis of indoles. One of the most attractive and general methods of indoles and indolinones would be the reductive cyclization of a-nitroaryl carbonyl compounds (Eq. 10.54). The VNS and related reactions afford a-nitroaryl carbonyl compounds by a simple procedure. For example, alkylation of 4-fluoronitrobenzene with a lactone silyl enol ether followed by reductive cyclization leads to tryptophols (Eq. 10.55).73... [Pg.341]

Zirconium enolates of various carbonyl compounds have also been investigated for Mannich-type reactions with different electrophiles. According to Shibasaki s method,148 the coupling reaction between a 3-acetoxy-4-alkyl-/3-lactam and the in r(/ -generated zirconium enolate 96 of a cyclohexanone derivative was realized as a key step during the total synthesis of an anitibiotic (Scheme 42).117,149... [Pg.423]

Chapter 2 provided a general introduction to the a-alkylation of carbonyl compounds, as well as the enantioselective nucleophilic addition on carbonyl compounds. Chiral auxiliary aided a-alkylation of a carbonyl group can provide high enantioselectivity for most substrates, and the hydrazone method can provide routes to a large variety of a-substituted carbonyl compounds. While a-alkylation of carbonyl compounds involves the reaction of an enolate, the well known aldol reaction also involves enolates. [Pg.135]

Covalently bonded chiral auxiliaries readily induce high stereoselectivity for propionate enolates, while the case of acetate enolates has proved to be difficult. Alkylation of carbonyl compound with a novel cyclopentadienyl titanium carbohydrate complex has been found to give high stereoselectivity,44 and a variety of ft-hydroxyl carboxylic acids are accessible with 90-95% optical yields. This compound was also tested in enantioselective aldol reactions. Transmetalation of the relatively stable lithium enolate of t-butyl acetate with chloro(cyclopentadienyl)-bis(l,2 5,6-di-<9-isopropylidene-a-D-glucofuranose-3-0-yl)titanate provided the titanium enolate 66. Reaction of 66 with aldehydes gave -hydroxy esters in high ee (Scheme 3-23). [Pg.155]

The chiral A/ -propionyl-2-oxazolidones (32 and 38) are also useful chiral auxiliaries in the enantioselective a-alkylation of carbonyl compounds, and it is interesting to observe that the sense of chirality transfer in the lithium enolate alkylation is opposite to that observed in the aldol condensation with boron enolates. Thus, whereas the lithium enolate of 37 (see Scheme 9.13) reacts with benzyl bromide to give predominantly the (2/ )-isomer 43a (ratio 43a 43b = 99.2 0.8), the dibutylboron enolate reacts with benzaldehyde to give the (3R, 25) aldol 44a (ratio 44a 44b = 99.7 0.3). The resultant (2R) and (25)-3-phenylpropionic acid derivatives obtained from the hydrolysis of the corresponding oxazolidinones indicated the compounds to be optically pure substances. [Pg.249]

Alkylation of enolates with a-halo carbonyl compounds. (Formation of 1,4-dicarbonyl compounds)... [Pg.516]

Treatment of aldehydes or ketones with acceptor-substituted carbene complexes leads to formation of enol ethers [1271-1274], oxiranes [1048], or 1,3-dioxolanes [989,1275] by O-alkylation of the carbonyl compound. Carboxylic acid derivatives... [Pg.206]

Now for some interesting features of the reaction, though they become fairly obvious with a little thought. First, the central methylene contains the more acidic protons (pATa 9) since it is flanked by two carbonyls, so the enolate anion formed involves this carbon (see Section 4.3.5). In other words, alkylation occurs on the central carbon of acetylacetone, not on the terminal carbons. Second, it is possible to use carbonyl compounds such as acetone as a solvent without these reacting under the reaction conditions. Acetone will have similar acidity (pATa 19) to the acetyl groups of acetylacetone, so likewise will not... [Pg.358]

The inverse type hetero-Diels-Alder reaction of functionally substituted a, p-unsaturated carbonyl compounds was also possible with -alkyl substituted enol ethers (Scheme 9) (25). This was demonstrated in the synthesis... [Pg.190]

Finally, the addition of the carbanion of 1-chloroalkyl p-tolyl sulfoxides 154 to carbonyl compounds gave the adducts 155, which were treated with alkyllithium such as f-C4H9Li to afford the one-carbon homologated carbonyls compounds 158, from their lithium enolate forms 157, having an alkyl group at the a-position, via the carbenoid /S-alkoxides 156 (equation 53) °. [Pg.484]

There are a few reports on the amination of a-metallated carbonyl compounds with 0-(arenesulfonyl)hydroxylamine-type reagents. However, in recent years there has been substantial progress in Af-(alkoxycarbonyl) 0-(arenesulfonyl)hydroxylamine [alkyl N-(arenesulfonyloxy)carbamate]-type reagents for the amination of enolates and eniminates. [Pg.320]

Aldol addition and condensation reactions involving two different carbonyl compounds are called mixed aldol reactions. For these reactions to be useful as a method for synthesis, there must be some basis for controlling which carbonyl component serves as the electrophile and which acts as the enolate precursor. One of the most general mixed aldol condensations involves the use of aromatic aldehydes with alkyl ketones or aldehydes. Aromatic aldehydes are incapable of enolization and cannot function as the nucleophilic component. Furthermore, dehydration is especially favorable because the resulting enone is conjugated with the aromatic ring. [Pg.60]

Prior to protonolysis, the products of conjugate addition to unsaturated carbonyl compounds are enolates and, therefore, potential nucleophiles. A useful extension of the conjugate addition method is to combine it with an alkylation step that adds a substituent at the a position.52 Several examples of this tandem conjugate addition/alkylation procedure are given in Scheme 8.2. [Pg.489]

One problem in the anti-selective Michael additions of A-metalated azomethine ylides is ready epimerization after the stereoselective carbon-carbon bond formation. The use of the camphor imines of ot-amino esters should work effectively because camphor is a readily available bulky chiral ketone. With the camphor auxiliary, high asymmetric induction as well as complete inhibition of the undesired epimerization is expected. The lithium enolates derived from the camphor imines of ot-amino esters have been used by McIntosh s group for asymmetric alkylations (106-109). Their Michael additions to some a, p-unsaturated carbonyl compounds have now been examined, but no diastereoselectivity has been observed (108). It is also known that the A-pinanylidene-substituted a-amino esters function as excellent Michael donors in asymmetric Michael additions (110). Lithiation of the camphor... [Pg.774]


See other pages where Carbonyl compounds enolate alkylation is mentioned: [Pg.456]    [Pg.96]    [Pg.97]    [Pg.299]    [Pg.99]    [Pg.111]    [Pg.23]    [Pg.1]    [Pg.1169]    [Pg.316]    [Pg.111]    [Pg.253]    [Pg.491]    [Pg.492]    [Pg.238]    [Pg.211]    [Pg.841]    [Pg.24]    [Pg.69]   
See also in sourсe #XX -- [ Pg.899 , Pg.900 ]

See also in sourсe #XX -- [ Pg.897 , Pg.898 ]




SEARCH



Alkylating compounds

Alkylation compounds

Alkylative carbonylation

Carbonyl alkylation

Carbonyl compounds enolates

Carbonyl compounds enolization

Carbonyl compounds enols

Condensation reactions, carbonyl compounds alkylation, enolate ions

Enol alkyl

Enolate alkylation

Enolate compound

Enolates alkylation

Enolates compounds

Enols alkylation

© 2024 chempedia.info