Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Camphor auxiliary

One problem in the anti-selective Michael additions of A-metalated azomethine ylides is ready epimerization after the stereoselective carbon-carbon bond formation. The use of the camphor imines of ot-amino esters should work effectively because camphor is a readily available bulky chiral ketone. With the camphor auxiliary, high asymmetric induction as well as complete inhibition of the undesired epimerization is expected. The lithium enolates derived from the camphor imines of ot-amino esters have been used by McIntosh s group for asymmetric alkylations (106-109). Their Michael additions to some a, p-unsaturated carbonyl compounds have now been examined, but no diastereoselectivity has been observed (108). It is also known that the A-pinanylidene-substituted a-amino esters function as excellent Michael donors in asymmetric Michael additions (110). Lithiation of the camphor... [Pg.774]

Nevertheless, the camphor auxiliary provided a single diastereomer in the synthetically useful yield of SOW (isolated, analytically pure, single diastereomer). which compares favorably to ihe isolated yield of 58 a of the single diastereomer obtained using the chiron approach (entry 1). As described in a subsequent section, the auxiliary approach proved useful lor several synthetic applications as well. [Pg.153]

An unusual face selectivity in an aldol condensation has been explained by invoking an interaction between the formyl group and a 4,5-positioned unsaturation. Lithium enolates of a-hydroxy ketones, derived from camphor, undergo aldol reactions with typically 90% def onward reaction to a variety of carbonyl products can be achieved with recycling of the camphor auxiliary. [Pg.19]

Oppolzer Camphor based auxiliaries Tetrahedron, 1987, 43, 1969. diastereoselectivities on the order of 50 1... [Pg.77]

There has been some investigation of auxiliary-controlled cycloadditions of azir-ines. Thus, camphor-derived azirine esters undergo cycloaddition with dienes, with poor diastereoselectivity [70]. The same azirines were also observed to react unselectively with phenylmagnesium bromide. Better selectivities were obtained when Lewis acids were used in the corresponding cycloaddition reactions of 8-phe-nylmenthyl esters of azirine 2-carboxylates (Scheme 4.48) [71]. The same report also describes the use of asymmetric Lewis acids in similar cycloadditions, but mediocre ees were observed. [Pg.139]

Several methods for asymmetric C —C bond formation have been developed based on the 1,4-addition of chiral nonracemic azaenolates derived from optically active imines or enamines. These methods are closely related to the Enders and Schollkopf procedures. A notable advantage of all these methods is the ready removal of the auxiliary group. Two types of auxiliaries were generally used to prepare the Michael donor chiral ketones, such as camphor or 2-hydroxy-3-pinanone chiral amines, in particular 1-phenylethanamine, and amino alcohol and amino acid derivatives. [Pg.980]

Addition of the imine of camphor and glycine, as the Michael donor, to a,/i-unsaturated esters yields, after removal of the auxiliary, anP -(22 )-3-substituted glutamates208. [Pg.980]

Optically active bicyclo[2.2,2]octanes can be obtained via diastercoselective MIMIRC reaction of lithium dienolates and a,/ -unsaturated esters of various chiral alcohols. Good yields (70-90%), high endo selectivities (> 95%) and diastereomeric ratios that depend on the auxiliary alcohol are found in these additions. The highest diastereomeric ratio reached was 18 82 using a camphor derived sulfonamide. The diastereomeric ratio could be improved (up to 9 91) by titanium(IV) chloride catalyzed addition of the corresponding silylenolates with the chiral a,/J-unsaturated esters358. [Pg.997]

The addition reactions of alkyllithium-lithium bromide complexes to a-trimethylsilyl vinyl sulfones that have as a chiral auxiliary a y-mono-thioacetal moiety derived from ( + )-camphor are highly diastereoselective. A transition state that involves chelation of the organolithium reagent to the oxygen of the thioacetal moiety has been invoked. The adducts are readily converted via hydrolysis, to chiral a-substituted aldehydes22. [Pg.1039]

Imidazole and its derivatives continued to play an important role in asymmetric processes. Optically active pyrroloimidazoles 26 were prepared by the cycloaddition of homochiral imidazolium ylides with activated alkenes <96TL1707>. This reaction was used in the enantioselective preparation of pyrrolidines <96TL1711>. A review of the use of chiral imidazolidines in asymmetric synthesis was published <96PAC531> and the preparation and use of a new camphor-derived imidazolidinone-type auxiliary 27 was reported < 6TL4565> <96TL6931>. [Pg.155]

Camphor-derived sulfonamide can also permit control of enantioselectivity by use of additional Lewis acid. These chiral auxiliaries can be used under conditions in which either cyclic or noncyclic TSs are involved. This frequently allows control of the syn or anti stereoselectivity.143 The boron enolates give syn products, but inclusion of SnCl4 or TiCl4 gave excellent selectivity for anti products and high enantioselectivity for a range of aldehydes.145... [Pg.123]

A new chiral auxiliary based on a camphor-derived 8-lactol has been developed for the stereoselective alkylation of glycine enolate in order to give enantiomerically pure a-amino acid derivatives. As a key step for the synthesis of this useful auxiliary has served the rc-selective hydroformylation of a homoallylic alcohol employing the rhodium(I)/XANTPHOS catalyst (Scheme 11) [56]. [Pg.155]

However, most asymmetric 1,3-dipolar cycloaddition reactions of nitrile oxides with alkenes are carried out without Lewis acids as catalysts using either chiral alkenes or chiral auxiliary compounds (with achiral alkenes). Diverse chiral alkenes are in use, such as camphor-derived chiral N-acryloylhydrazide (195), C2-symmetric l,3-diacryloyl-2,2-dimethyl-4,5-diphenylimidazolidine, chiral 3-acryloyl-2,2-dimethyl-4-phenyloxazolidine (196, 197), sugar-based ethenyl ethers (198), acrylic esters (199, 200), C-bonded vinyl-substituted sugar (201), chirally modified vinylboronic ester derived from D-( + )-mannitol (202), (l/ )-menthyl vinyl ether (203), chiral derivatives of vinylacetic acid (204), ( )-l-ethoxy-3-fluoroalkyl-3-hydroxy-4-(4-methylphenylsulfinyl)but-1 -enes (205), enantiopure Y-oxygenated-a,P-unsaturated phenyl sulfones (206), chiral (a-oxyallyl)silanes (207), and (S )-but-3-ene-1,2-diol derivatives (208). As a chiral auxiliary, diisopropyl (i ,i )-tartrate (209, 210) has been very popular. [Pg.25]

For acrylates, or type I reagents, applied in asymmetric Diels-Alder reactions, several chiral auxiliaries such as menthol derivatives, camphor derivatives,16,3 and oxazolidinones4 are available. Carbohydrate compounds have also been reported as chiral auxiliaries in a recent publication, although the stereoselectivity was not good.5 Here are examples in which asymmetric Diels-... [Pg.269]

Camphor sultam derivatives have proved to be effective chiral auxiliaries in many different types of asymmetric reactions. As shown in Scheme 5-44, chiral camphor sulfam can be applied in the synthesis of (—)-pulo upone precursor 151 using an intramolecular Diels-Alder reaction. A Wittig reaction of 148 with 147 connects the chiral auxiliary to the substrate, and subsequent intramolecular Diels-Alder reaction via transition state 150 affords product 151. Compound 151 already has the stereochemistry of (—)-pulo upone 153.72... [Pg.304]

It is also possible to carry out a substrate-controlled reaction with aldehydes in an asymmetric way by starting with an acetylene bearing an optically active ester group, as shown in Eq. 9.8 [22]. The titanium—acetylene complexes derived from silyl propiolates having a camphor-derived auxiliary react with aldehydes with excellent diastereoselectivity. The reaction thus offers a convenient entry to optically active Baylis—Hillman-type allyl alcohols bearing a substituent (3 to the acrylate group, which have hitherto proved difficult to prepare by the Baylis—Hillman reaction itself. [Pg.326]

Scheme 4.71 Camphor-derived auxiliary for the asymmetric synthesis of chiral allene ether 280. Scheme 4.71 Camphor-derived auxiliary for the asymmetric synthesis of chiral allene ether 280.
The Lewis acid-promoted [4+ 2]-cycloaddition reaction of the allenic ester 103 having a camphor-derived chiral auxiliary with cydopentadiene provided the adduct with excellent Jt-facial selection, leading to an enantioselective synthesis of (-)-/l-san-talene [92]. [Pg.760]

There are some problems associated with the use of sugar-derived auxiliaries 16 and 18. The nudeophilicity is much lower than for 1, possibly because of the presence of multiple ether functions that can complex lithium ion. It was necessary to include 4 equiv. of LiCl in the addition reactions of 16 and 19 to enamides, otherwise yields were low. A more serious problem associated with 16 is the erosion of the ee of products that was observed when the reactions were scaled up from 0.2 to 4 mmol. Fortunately, a chiral auxiliary that is prepared from camphor does not have these shortcomings [10]. [Pg.820]

Very recently the tandem hydroformylation/acetalization has been used for the synthesis of new synthetically valuable chiral auxiliary derived from camphor. Stereoselective allylation of camphor and subsequent terminal hydroformylation of the resulting homoallylic alcohol affords the 5-lactol auxiliary (camTHP OH) in multigram scale (Scheme 8) [41]. [Pg.79]

Another aspect of the chemical properties of mixmres of enantiomers has been reported by Wynberg and Feringa in 1976. These authors have smdied some dia-stereoselective reactions on chiral molecules (such as the LiAlH4 reduction of camphor) in the absence of chiral auxiliaries. They found that the product distribution was significantly different if the substrate was enantiopure or racemic. Similarly, it is known that reduction of enantiopure or racemic camphor by K/liquid NH3 gives rise to different isobomeol/bomeol ratios, a detailed mechanistic analysis has been done by Rautenstrauch. °... [Pg.209]

The formation of spirocyclopropanes from the reaction of diazodiphenylmethane and ( )-8-phenylmenthyl esters of acrylic acid and methyl fumarate occurred with a modest level of diastereofacial selectivity (136). In contrast, diastereoselectivities of 90 10 were achieved in the cycloadditions of diazo(trimethylsilyl)methane with acrylamides 65 derived from camphor sultam as the chiral auxiliary (137) (Scheme 8.16). Interestingly, the initial cycloadducts 66 afforded the nonconjugated A -pyrazolines 67 on protodesilylation the latter were converted into optically active azaproline derivatives 68. In a related manner, acrylamide 69 was converted into A -pyrazolines 70a,b (138). The major diastereoisomer 70a was used to synthesize indolizidine 71. The key step in this synthesis involves the hydrogenolytic cleavage of the pyrazoline ring. [Pg.554]

The auxihary acrylates 161 and 162 have been used in 1,3-dipolar cycloadditions with nitrile oxides. The camphor-derived acrylate 161 underwent a 1,3-dipolar cycloaddition with benzonitrile oxide with up to 56% de (Scheme 12.51) (263). The auxiliary in acrylate 162 is derived from naturally occurring L-quebrachitol, and provided an effective shielding of the re-face of the alkene in the reaction with benzonitrile oxide, as 90% de was obtained (273). Compound 163 was used in a reaction with the nitrone 1-pyrrole-1-oxide, and the reaction proceeded to give a complex mixture of products (274). [Pg.853]

Asymmetric alkylation of benzylamine via the imine 6A, with ( + )-D-camphor (5 A) as chiral auxiliary is possible. Deprotonation with butyllithium and subsequent alkylation with haloalkanes, (R X) afforded the alkylated imines 7 A with reasonable yield but variable diastereo-selectivity. The diastereoselectivity depends strongly on the haloalkane with methoxy-substi-tuted halomethylbenzenes moderate to good diastereoselectivity (d.r. 80 20-90 10) is obtained, however, with haloalkanes or 3-halopropenes only low optical purities (< 50%) were observed. [Pg.673]


See other pages where Camphor auxiliary is mentioned: [Pg.175]    [Pg.394]    [Pg.153]    [Pg.153]    [Pg.294]    [Pg.294]    [Pg.175]    [Pg.394]    [Pg.153]    [Pg.153]    [Pg.294]    [Pg.294]    [Pg.78]    [Pg.73]    [Pg.125]    [Pg.268]    [Pg.269]    [Pg.50]    [Pg.18]    [Pg.71]    [Pg.341]    [Pg.456]    [Pg.821]    [Pg.383]    [Pg.67]    [Pg.164]    [Pg.1040]    [Pg.520]    [Pg.792]    [Pg.187]    [Pg.412]   
See also in sourсe #XX -- [ Pg.175 ]




SEARCH



Aldol reaction chiral auxiliaries, camphor

Alkylations chiral auxiliaries, camphor

Camphor chiral auxiliary

Camphor derivatives, chiral auxiliaries

Camphor-derived Chiral Auxiliaries

Camphor-derived auxiliaries

Camphorates

Camphore

Chiral auxiliary (also camphor sultam

© 2024 chempedia.info