Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lithium enolates alkylation

The chiral A/ -propionyl-2-oxazolidones (32 and 38) are also useful chiral auxiliaries in the enantioselective a-alkylation of carbonyl compounds, and it is interesting to observe that the sense of chirality transfer in the lithium enolate alkylation is opposite to that observed in the aldol condensation with boron enolates. Thus, whereas the lithium enolate of 37 (see Scheme 9.13) reacts with benzyl bromide to give predominantly the (2/ )-isomer 43a (ratio 43a 43b = 99.2 0.8), the dibutylboron enolate reacts with benzaldehyde to give the (3R, 25) aldol 44a (ratio 44a 44b = 99.7 0.3). The resultant (2R) and (25)-3-phenylpropionic acid derivatives obtained from the hydrolysis of the corresponding oxazolidinones indicated the compounds to be optically pure substances. [Pg.249]

Lithium borohydride, J35 Lithium enolates, alkylation, 199 Lithium, in liquid ammonia, 197-200... [Pg.242]

Koga et al. have discovered [4] a remarkable catalytic process for the asymmetric ben-zylation of lithium enolates derived from silyl enol ethers 1 and 3 (Scheme 1). Previously, stereocontrolled lithium enolate alkylation has been restricted to either diastereoselective processes, [2a,c] requiring the covalent attachment of a chiral auxiliary, or to enantio-selective reactions requiring stoichiometric amounts of chiral ligands. [2b] Indeed, this new catalytic reaction is a development of an... [Pg.3]

Proper choice of the alkylating agent is key to successful lithium enolate alkylation. [Pg.833]

An asymmetric synthesis of estrone begins with an asymmetric Michael addition of lithium enolate (178) to the scalemic sulfoxide (179). Direct treatment of the cmde Michael adduct with y /i7-chloroperbenzoic acid to oxidize the sulfoxide to a sulfone, followed by reductive removal of the bromine affords (180, X = a and PH R = H) in over 90% yield. Similarly to the conversion of (175) to (176), base-catalyzed epimerization of (180) produces an 85% isolated yield of (181, X = /5H R = H). C8 and C14 of (181) have the same relative and absolute stereochemistry as that of the naturally occurring steroids. Methylation of (181) provides (182). A (CH2)2CuLi-induced reductive cleavage of sulfone (182) followed by stereoselective alkylation of the resultant enolate with an allyl bromide yields (183). Ozonolysis of (183) produces (184) (wherein the aldehydric oxygen is by isopropyUdene) in 68% yield. Compound (184) is the optically active form of Ziegler s intermediate (176), and is converted to (+)-estrone in 6.3% overall yield and >95% enantiomeric excess (200). [Pg.436]

The leaving group in the alkylating reagent has a major effect on whether C- or O-alkylation occurs. In the case of the lithium enolate of acetophenone, for example, C-alkylation is predominant with methyl iodide, but C- and O-alkylation occur to approximately equal extents with dimethyl sulfate. The C- versus O-alkylation ratio has also been studied for the potassium salt of ethyl acetoacetate as a function of both solvent and leaving group. ... [Pg.438]

Stork and his colleagues, working with nonsteroidal compounds, have shown that only lithium enolates may be alkylated successfully in ammonia or tetrahydrofuran. The more basic sodium and potassium enolates undergo... [Pg.47]

Various diastereoselective Michael reactions are based on y-bromo-, y-alkyl-, or y-alkoxy-2(5//)-furanones following the trans-face selectivity shown in Section 1.5.2.3.1.2. Thus the lithium enolates of esters such as ethyl propanoate, ethyl a-methoxyacetate and ethyl a-phenylacetate add to methoxy-2(5/f)-furanone with complete face selectivity269-273 (see Section 1.5.2.4.4.2.). [Pg.990]

Unless a proton donor is added, the lithium-ammonia reduction of an cnone leads to the lithium enolate and lithium amide. The latter is a sufficiently strong base to rapidly convert the mono-alkylated ketone into its enolate, which can be further alkylated. The function of the... [Pg.56]

For enolates with additional functional groups, chelation may influence stereoselectivity. Chelation-controlled alkylation has been examined in the context of the synthesis of a polyol lactone (-)-discodermolide. The lithium enolate 4 reacts with the allylic iodide 5 in a hexane THF solvent mixture to give a 6 1 ratio favoring the desired stereoisomer. Use of the sodium enolate gives the opposite stereoselectivity, presumably because of the loss of chelation.61 The solvent seems to be quite important in promoting chelation control. [Pg.28]

Ester enolates are somewhat less stable than ketone enolates because of the potential for elimination of alkoxide. The sodium and potassium enolates are rather unstable, but Rathke and co-workers found that the lithium enolates can be generated at -78° C.69 Alkylations of simple esters require a strong base because relatively weak bases such as alkoxides promote condensation reactions (see Section 2.3.1). The successful formation of ester enolates typically involves an amide base, usually LDA or LiHDMS, at low temperature.70 The resulting enolates can be successfully alkylated with alkyl bromides or iodides. HMPA is sometimes added to accelerate the alkylation reaction. [Pg.31]

Alkylations of this type also proved to be sensitive to the cation. Good stereoselectivity (15 1) was observed for the lithium enolate, but the sodium and potassium enolates were much less selective.75 This probably reflects the weaker coordination of the latter metals. [Pg.33]

A number of other types of chiral auxiliaries have been employed in enolate alkylation. Excellent results are obtained using amides of pseudoephedrine. Alkylation occurs anti to the a-oxybenzyl group.93 The reactions involve the Z-enolate and there is likely bridging between the two lithium cations, perhaps by di-(isopropyl)amine.94... [Pg.42]

The requirement that an enolate have at least one bulky substituent restricts the types of compounds that give highly stereoselective aldol additions via the lithium enolate method. Furthermore, only the enolate formed by kinetic deprotonation is directly available. Whereas ketones with one tertiary alkyl substituent give mainly the Z-enolate, less highly substituted ketones usually give mixtures of E- and Z-enolates.7 (Review the data in Scheme 1.1.) Therefore efforts aimed at increasing the stereoselectivity of aldol additions have been directed at two facets of the problem (1) better control of enolate stereochemistry, and (2) enhancement of the degree of stereoselectivity in the addition step, which is discussed in Section 2.1.2.2. [Pg.69]

A study of the lithium enolate of pinacolone with several a-phenyl aldehydes gave results generally consistent with the Felkin model. Steric, rather than electronic, effects determine the conformational equilibria.77 If the alkyl group is branched, it occupies the large position. Thus, the f-butyl group occupies the large position, not the phenyl. [Pg.90]

Several examples of conjugate addition of carbanions carried out under aprotic conditions are given in Scheme 2.24. The reactions are typically quenched by addition of a proton source to neutralize the enolate. It is also possible to trap the adduct by silylation or, as we will see in Section 2.6.2, to carry out a tandem alkylation. Lithium enolates preformed by reaction with LDA in THF react with enones to give 1,4-diketones (Entries 1 and 2). Entries 3 and 4 involve addition of ester enolates to enones. The reaction in Entry 3 gives the 1,2-addition product at —78°C but isomerizes to the 1,4-product at 25° C. Esters of 1,5-dicarboxylic acids are obtained by addition of ester enolates to a,(3-unsaturated esters (Entry 5). Entries 6 to 8 show cases of... [Pg.186]


See other pages where Lithium enolates alkylation is mentioned: [Pg.73]    [Pg.51]    [Pg.73]    [Pg.51]    [Pg.122]    [Pg.47]    [Pg.164]    [Pg.296]    [Pg.298]    [Pg.1021]    [Pg.56]    [Pg.57]    [Pg.236]    [Pg.237]    [Pg.14]    [Pg.87]    [Pg.128]   
See also in sourсe #XX -- [ Pg.2 ]




SEARCH



Alkyl lithium

Alkylation 1-decalone lithium 1 -enolate

Alkylation lithium

Alkylation of lithium enolates

Alkylation preformed lithium enolates

Alkylations of lithium enolates

Enol alkyl

Enolate alkylation

Enolate lithium

Enolates alkylation

Enolates lithium

Enols alkylation

Ketone lithium enolates diastereoselective alkylation

Lithium enolate stereoselective alkylation

Lithium enolates axial alkylation

© 2024 chempedia.info