Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbene complexes, acceptor-substitute

The most frequently used ylides for carbene-complex generation are acceptor-substituted diazomethanes. As already mentioned in Section 3.1.3.1, non-acceptor-substituted diazoalkanes are strong C-nucleophiles, easy to convert into carbene complexes with a broad variety of transition metal complexes. Acceptor-substituted diazomethanes are, however, less nucleophilic (and more stable) than non-acceptor-substituted diazoalkanes, and require catalysts of higher electrophilicity to be efficiently decomposed. Not surprisingly, the very stable bis-acceptor-substituted diazomethanes can be converted into carbene complexes only with strongly electrophilic catalysts. This order of reactivity towards electrophilic transition metal complexes correlates with the reactivity of diazoalkanes towards other electrophiles, such as Brpnsted acids or acyl halides. [Pg.172]

Fischer-type carbene complexes, generally characterized by the formula (CO)5M=C(X)R (M=Cr, Mo, W X=7r-donor substitutent, R=alkyl, aryl or unsaturated alkenyl and alkynyl), have been known now for about 40 years. They have been widely used in synthetic reactions [37,51-58] and show a very good reactivity especially in cycloaddition reactions [59-64]. As described above, Fischer-type carbene complexes are characterized by a formal metal-carbon double bond to a low-valent transition metal which is usually stabilized by 7r-acceptor substituents such as CO, PPh3 or Cp. The electronic structure of the metal-carbene bond is of great interest because it determines the reactivity of the complex [65-68]. Several theoretical studies have addressed this problem by means of semiempirical [69-73], Hartree-Fock (HF) [74-79] and post-HF [80-83] calculations and lately also by density functional theory (DFT) calculations [67, 84-94]. Often these studies also compared Fischer-type and... [Pg.6]

Several other observations suggest that nucleophilic carbene complexes, similarly to, e.g., sulfur ylides, can cyclopropanate acceptor-substituted olefins by an addition-elimination mechanism. If, e.g., acceptor-substituted olefins are added to a mixture of a simple alkene and the metathesis catalyst PhWCl3/AlCl3, the metathesis reaction is quenched and small amounts of acceptor-substituted cyclopropanes can be isolated [34]. [Pg.8]

Because of n-electron donation by the heteroatom, these carbene complexes are generally less electrophilic at C than the corresponding non-heteroatom-substituted complexes (Chapter 3). This effect is even more pronounced in bis-heteroatom-substituted carbenes, which are very weak Tt-acceptors and towards low-valent transition metals show binding properties similar to those of phosphines or pyridine. Alkoxycarbenes, on the other hand, have electronic properties similar to those of carbon monoxide, and stable heteroatom-monosubstituted carbene complexes are also usually formed from metals which form stable carbonyl complexes. [Pg.13]

Isonitrile complexes, having a similar electronic structure to carbonyl complexes, can also react with nucleophiles. Amino-substituted carbene complexes can be prepared in this way (Figure 2.6) [109-112]. Complexes of acceptor-substituted isonitriles can undergo 1,3-dipolar cycloaddition reactions with aldehydes, electron-poor olefins [113], isocyanates [114,115], carbon disulfide [115], etc., to yield heterocycloalkylidene complexes (Figure 2.6). [Pg.21]

Diaminocarbene complexes were reported as early as 1968 [152], Preparation and applications of such complexes have been reviewed [153], Because of 7t-electron donation by both nitrogen atoms, diaminocarbenes are very weak tt-acceptors and have binding properties towards low-valent transition metals similar to those of phosphines or pyridines [18,153]. For this reason diaminocarbenes form complexes with a broad range of different metals, including those of the titanium group. Titanium does not usually form stable donor-substituted carbene complexes, but rather ylide-like, nucleophilic carbene complexes with non-heteroatom-substituted carbenes (Chapter 3). [Pg.27]

Heteroatom-substituted carbene complexes are less electrophilic than the corresponding methylene, dialkylcarbene, or diarylcarbene complexes. For this reason cyclopropanation of electron-rich alkenes with the former does not proceed as readily as with the latter. Usually high reaction temperatures are necessary, with radical scavengers being used to supress side-reactions (Table 2.16). Also acceptor-substituted alkenes can be cyclopropanated by Fischer-type carbene complexes, but with this type of substrate also heating is generally required. [Pg.45]

Arene(alkoxy)carbene chromium complexes react with aryl-, alkyl-, terminal, or internal alkynes in ethers or acetonitrile to yield 4-alkoxy-1-naphthols, with the sterically more demanding substituent of the alkyne (Rl Figure 2.24) ortho to the hydroxy group. Acceptor-substituted alkynes can also be used in this reaction (Entry 4, Table 2.17) [331]. Donor-substituted alkynes can however lead to the formation of other products [191,192]. Also (diarylcarbene)pentacarbonyl chromium complexes can react with alkynes to yield phenols [332]. [Pg.50]

Electrophilic transition metal complexes can react with organic ylides to yield alkylidene complexes. A possible mechanism would be the initial formation of alkyl complexes, which are converted into the final carbene complexes by electrophilic a-abstraction (Figure 3.18). This process is particularly important for the generation of acceptor-substituted carbene complexes (Section 4.1). [Pg.90]

Numerous carbene complexes have since been prepared by this method [1,52,60,499-503], even utilizing highly reactive diazoalkanes such as diazomethane [504], Because of their high nucleophilicity and reactivity, non-acceptor-substituted diazoalkanes can displace even strongly bound ligands, such as phosphines. Examples of such reactions are shown in Figure 3.20. [Pg.91]

Transition metal complexes which react with diazoalkanes to yield carbene complexes can be catalysts for diazodecomposition (see Section 4.1). In addition to the requirements mentioned above (free coordination site, electrophi-licity), transition metal complexes can catalyze the decomposition of diazoalkanes if the corresponding carbene complexes are capable of transferring the carbene fragment to a substrate with simultaneous regeneration of the original complex. Metal carbonyls of chromium, iron, cobalt, nickel, molybdenum, and tungsten all catalyze the decomposition of diazomethane [493]. Other related catalysts are (CO)5W=C(OMe)Ph [509], [Cp(CO)2Fe(THF)][BF4] [510,511], and (CO)5Cr(COD) [52,512]. These compounds are sufficiently electrophilic to catalyze the decomposition of weakly nucleophilic, acceptor-substituted diazoalkanes. [Pg.91]

Most electrophilic carbene complexes with hydrogen at Cjj will undergo fast 1,2-proton migration with subsequent elimination of the metal and formation of an alkene. For this reason, transition metal-catalyzed cyclopropanations with non-acceptor-substituted diazoalkanes have mainly been limited to the use of diazomethane, aryl-, and diaryldiazomethanes (Tables 3.4 and 3.5). [Pg.116]

As mentioned in Sections 3.1.6 and 4.1.3, cyclopropenes can also be suitable starting materials for the generation of carbene complexes. Cyclopropenone di-methylacetal [678] and 3-alkyl- or 3-aryl-disubstituted cyclopropenes [679] have been shown to react, upon catalysis by Ni(COD)2, with acceptor-substituted olefins to yield the products of formal, non-concerted vinylcarbene [2-1-1] cycloaddition (Table 3.6). It has been proposed that nucleophilic nickel carbene complexes are formed as intermediates. Similarly, bicyclo[1.1.0]butane also reacts with Ni(COD)2 to yield a nucleophilic homoallylcarbene nickel complex [680]. This intermediate is capable of cyclopropanating electron-poor alkenes (Table 3.6). [Pg.119]

Carbene C-H (and Si-H, [695]) insertion is characteristic of electrophilic carbene complexes. In particular the insertion reactions of acceptor-substituted carbene complexes (Section 4.2) have become a valuable tool for organic synthesis. [Pg.122]

Hence, cationic iron carbene complexes such as Cp(CO)2Fe =CHCHZR, in which Z is an electron-withdrawing group, might also be suitable for intermolecular cyclopropanation or C-H insertion reactions. The use of such carbene complexes in organic synthesis has not yet been thoroughly investigated, but could fruitfully supplement the chemistry of acceptor-substituted carbenes. [Pg.125]

Particularly interesting is the reaction of enynes with catalytic amounts of carbene complexes (Figure 3.50). If the chain-length between olefin and alkyne enables the formation of a five-membered or larger ring, then RCM can lead to the formation of vinyl-substituted cycloalkenes [866] or heterocycles. Examples of such reactions are given in Tables 3.18-3.20. It should, though, be taken into account that this reaction can also proceed by non-carbene-mediated pathways. Also Fischer-type carbene complexes and other complexes [867] can catalyze enyne cyclizations [267]. Trost [868] proposed that palladium-catalyzed enyne cyclizations proceed via metallacyclopentenes, which upon reductive elimination yield an intermediate cyclobutene. Also a Lewis acid-catalyzed, intramolecular [2 + 2] cycloaddition of, e.g., acceptor-substituted alkynes to an alkene to yield a cyclobutene can be considered as a possible mechanism of enyne cyclization. [Pg.149]

The order of reactivity of these three catalysts towards alkenes (but also towards oxygen) is 1 > 3 > 2. As illustrated by the examples in Table 3.18, these catalysts tolerate a broad spectrum of functional groups. Highly substituted and donor- or acceptor-substituted olefins can also be suitable substrates for RCM. It is indeed surprising that acceptor-substituted alkenes can be metathesized. As discussed in Section 3.2.2.3 such electron-poor alkenes can also be cyclopropanated by nucleophilic carbene complexes [34,678] or even quench metathesis reactions [34]. This seems, however, not to be true for catalysts 1 or 2. [Pg.150]

Electrophilic carbene complexes generated from diazoalkanes and rhodium or copper salts can undergo 0-H insertion reactions and S-alkylations. These highly electrophilic carbene complexes can, moreover, also undergo intramolecular rearrangements. These reactions are characteristic of acceptor-substituted carbene complexes and will be treated in Section 4.2. [Pg.169]

In contrast with non-acceptor-substituted carbene complexes, most of which are rather stable compounds, only few acceptor-substituted carbene complexes have been isolated [500,502,947,948]. In particular, acceptor-substituted carbene complexes relevant to organic synthesis (e.g. copper or rhodium acylcarbene complexes) are normally highly reactive and have remained elusive to spectroscopic characterization (for theoretical treatments, see Section 1.2). The inference that these intermediates are indeed carbene complexes is in part based on the observation that the modes of generation and the reactivity of these reactive species correlate well with those of less reactive carbene complexes. [Pg.171]

The most important synthetic access to acceptor-substituted carbene complexes is the reaction of ylides with electrophilic, coordinatively unsaturated transition metal complexes (Figure 4.1 see also Section 3.1.3). [Pg.171]

Fig. 4.1. Generation of acceptor-substituted carbene complexes from ylides. X N2, SR2, S(0)Me2, Arl Z COR, CO2R, CONR2, SO2R, CN, P(0)(0R)2. Fig. 4.1. Generation of acceptor-substituted carbene complexes from ylides. X N2, SR2, S(0)Me2, Arl Z COR, CO2R, CONR2, SO2R, CN, P(0)(0R)2.
Because acceptor-substituted carbene complexes can normally not be isolated, generation must occur in the presence of a suitable substrate. If during carbene-transfer from the intermediate carbene complex to the substrate the complex L M (Figure 4.1) is regenerated, then catalytic amounts of this complex only will be... [Pg.171]

The great popularity of diazocompounds as carbene complex precursors is mainly because of the ease of their preparation and handling. In addition to this, catalytic diazodecompositions often proceed very cleanly and in high yields. Acceptor-substituted diazomethanes can be prepared in several different ways (Figure 4.2). [Pg.172]

Table 4.1. Transition metal complexes suitable for the conversion of acceptor-substituted diazomethanes into carbene complexes. Table 4.1. Transition metal complexes suitable for the conversion of acceptor-substituted diazomethanes into carbene complexes.
Different catalysts suitable for the conversion of acceptor-substituted diazomethanes into carbene complexes are listed in Table 4.1. Of these, the very efficient rhodium(II) and copper(I) complexes are by far the most commonly used catalysts. For a comparative study of several different catalysts, see [986]. [Pg.175]

Ylides other than acceptor-substituted diazomethanes have only occasionally been used as carbene-complex precursors. lodonium ylides (PhI=CZ Z ) [1017,1050-1056], sulfonium ylides [673], sulfoxonium ylides [1057] and thiophenium ylides [1058,1059] react with electrophilic transition metal complexes to yield intermediates capable of undergoing C-H or N-H insertions and olefin cyclopropanations. [Pg.176]

Synthetic Applicatiom of Acceptor-Substituted Carbene Complexes 177... [Pg.177]

Acceptor-substituted carbene complexes are highly reactive intermediates, capable of transforming organic compounds in many different ways. Typical reactions include insertion into o-bonds, cyclopropanation, and ylide formation. Generally, acceptor-substituted carbene complexes are not isolated and used in stoichiometric amounts, but generated in situ from a carbene precursor and transition metal derivative. Usually only catalytic quantities of a transition metal complex are required for complete conversion of a carbene precursor via an intermediate carbene complex into the final product. [Pg.178]

In the following sections the synthetically most useful reactions will be presented, ordered according to the type of reaction. Recent reviews covering transformations with acceptor-substituted carbene complexes include [38,995,1072-1079]. [Pg.178]

The different synthetic applications of acceptor-substituted carbene complexes will be discussed in the following sections. The reactions have been ordered according to their mechanism. Because electrophilic carbene complexes can undergo several different types of reaction, elaborate substrates might be transformed with little chemoselectivity. For instance, the phenylalanine-derived diazoamide shown in Figure 4.5 undergoes simultaneous intramolecular C-H insertion into both benzylic positions, intramolecular cyclopropanation of one phenyl group, and hydride abstraction when treated with rhodium(II) acetate. [Pg.178]

Carbenes and transition metal carbene complexes are among the few reagents available for the direct derivatization of simple, unactivated alkanes. Free carbenes, generated, e.g., by photolysis of diazoalkanes, are poorly selective in inter- or intramolecular C-H insertion reactions. Unlike free carbenes, acceptor-substituted carbene complexes often undergo highly regio- and stereoselective intramolecular C-H insertions into aliphatic and aromatic C-H bonds [995,1072-1074,1076,1085,1086],... [Pg.179]


See other pages where Carbene complexes, acceptor-substitute is mentioned: [Pg.22]    [Pg.50]    [Pg.190]    [Pg.216]    [Pg.168]    [Pg.158]    [Pg.171]    [Pg.171]    [Pg.172]    [Pg.172]    [Pg.173]    [Pg.174]    [Pg.175]    [Pg.176]    [Pg.178]    [Pg.178]    [Pg.179]   


SEARCH



Acceptor-Substituted Carbene Complexes

Carbene acceptors

Carbenes substitution

Complexes substitution

Generation of Acceptor-Substituted Carbene Complexes

© 2024 chempedia.info