Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anionic reactions

The problem of nitrogen alkylation of enamines, which one encounters with alkyl halides, is of no consequence in alkylations with positively activated olefins, since the generation of amonium salts can be expected to be reversible in these cases. Thus such enamine alkylations are obviously attractive to the synthetic chemist. Their particular importance, however, arises from avoidance of the serious obstacles often found with parallel enolate anion reactions. [Pg.359]

Cationic polymerization of cyclosiloxanes is well known but used much less frequently than anionic reactions. The most widely used catalysts include sulfuric acid and its derivatives, alkyl and aryl sulfonic acids and trifluoroacetic acid1 2,1221. Due to their ease of removal, in industrial applications acid catalysts are generally employed on supports such as bentonite clay or Fuller s earth. [Pg.19]

As shown in Fig. 6, when the salt [28 2 ] is dissolved in a variety of solvents, the anion [2 ] is rapidly consumed by reaction with the cation [28 ] and reaches an apparent equilibrium, the position of which depends on the solvent polarity. Clearly, the initial rate of the cation-anion reaction increases as the solvent polarity decreases. [Pg.210]

Figure 2. Stationary points on the neutral and anionic reaction pathways... Figure 2. Stationary points on the neutral and anionic reaction pathways...
G. Metal Cluster and Metal Oxide Anion Reactions.226... [Pg.185]

Domino transformations combining two consecutive anionic steps exist in several variants, but the majority of these reactions is initiated by a Michael addition [1]. Due to the attack of a nucleophile at the 4-position of usually an enone, a reactive enolate is formed which can easily be trapped in a second anionic reaction by, for example, another n,(5-urisalurated carbonyl compound, an aldehyde, a ketone, an inline, an ester, or an alkyl halide (Scheme 2.1). Accordingly, numerous examples of Michael/Michael, Michael/aldol, Michael/Dieckmann, as well as Michael/SN-type sequences have been found in the literature. These reactions can be considered as very reliable domino processes, and are undoubtedly of great value to today s synthetic chemist... [Pg.48]

The present section describes domino processes which combine two or three initiating anionic reaction steps with a following nonanionic transformation. [Pg.142]

In an anionic/radical domino process an interim single-electron transfer (SET) from the intermediate of the first anionic reaction must occur. Thus, a radical is generated which can enter into subsequent reactions. Although a SET corresponds to a formal change of the oxidation state, the transformations will be treated as typical radical reactions. To date, only a few true anionic/radical domino transformations have been reported in the literature. However, some interesting examples of related one-pot procedures have been established where formation of the radical occurs after the anionic step by addition of TEMPO or Bu3SnH. A reason for the latter approach are the problems associated with the switch between anionic and radical reaction patterns, which often do not permit the presence of a radical generator until the initial anionic reaction step is finished. [Pg.156]

This method is described in Chapt. 5 it is specific for anionic reactions because it involves anionic activation . [Pg.280]

For a long time, it was considered that the formation of a bromonium ion from olefin and bromine is irreversible, i.e. the product-forming step, a cation-anion reaction, is very fast compared with the preceding ionization step. There was no means of checking this assumption since the usual methods—kinetic effects of salts with common and non-common ions—used in reversible carbocation-forming heterolysis (Raber et al., 1974) could not be applied in bromination, where the presence of bromide ions leads to a reacting species, the electrophilic tribromide ion. Unusual bromide ion effects in the bromination of tri-t-butylethylene (Dubois and Loizos, 1972) and a-acetoxycholestene (Calvet et al, 1983) have been interpreted in terms of return, but cannot be considered as conclusive. [Pg.279]

Alternatively, unreactive mixtures of organosilicon hydrides and carbonyl compounds react by hydride transfer from the silicon center to the carbon center when certain nucleophilic species with a high affinity for silicon are added to the mixture.76 94 This outcome likely results from the formation of valence-expanded, pentacoordinate hydrosilanide anion reaction intermediates that have stronger hydride-donating capabilities than their tetravalent precursors (Eq. 6).22,95 101... [Pg.10]

Now, we may consider in detail the mechanism of oxygen radical production by mitochondria. There are definite thermodynamic conditions, which regulate one-electron transfer from the electron carriers of mitochondrial respiratory chain to dioxygen these components must have the one-electron reduction potentials more negative than that of dioxygen Eq( 02 /02]) = —0.16 V. As the reduction potentials of components of respiratory chain are changed from 0.320 to +0.380 V, it is obvious that various sources of superoxide production may exist in mitochondria. As already noted earlier, the two main sources of superoxide are present in Complexes I and III of the respiratory chain in both of them, the role of ubiquinone seems to be dominant. Although superoxide may be formed by the one-electron oxidation of ubisemiquinone radical anion (Reaction (1)) [10,22] or even neutral semiquinone radical [9], the efficiency of these ways of superoxide formation in mitochondria is doubtful. [Pg.750]


See other pages where Anionic reactions is mentioned: [Pg.342]    [Pg.529]    [Pg.687]    [Pg.242]    [Pg.30]    [Pg.1063]    [Pg.1063]    [Pg.205]    [Pg.213]    [Pg.161]    [Pg.417]    [Pg.214]    [Pg.69]    [Pg.109]    [Pg.283]    [Pg.751]   
See also in sourсe #XX -- [ Pg.690 ]




SEARCH



© 2024 chempedia.info