Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

11-carbon polyamide

The pelargonic acid by-product is already a useful item of commerce, making the overall process a commercial possibiUty. The 13-carbon polyamides appear to have many of the properties of nylon-11, nylon-12, or nylon-12,12 toughness, moisture resistance, dimensional stabiUty, increased resistance to hydrolysis, moderate melt point, and melt processibiUty. Thus, these nylons could be useful in similar markets, eg, automotive parts, coatings, fibers, or films. Properties for nylon-13,13 are = 56 (7 and = 183 (7 (179). [Pg.237]

EMS-Chemie and Schappe Techniques have produced a flexible carbon- polyamide 12 hybrid yarn by blending PA 12 staple fibers with stretch broken carbon fibers with a staple length of about 80 mm. This hybrid material can be compression molded, giving void free composites. [Pg.1009]

This improvement in performance in the bonded joint was attributed to tbe polarity of the composite surface. The intensity of corona treatment required to achieve the necessary degree of polarity was found to be dependent on tbe cure characteristics of the adhesive used and, to a certain extent, on the chemistry of the matrix. Thus, for the EA 9309, carbon/PEEK composites needed > 10 J/m and carbon-polyamide composites required a corona energy of > 3 J/mm. When FM-73M was used, the figures were > 20 J/mm and > 6 J/mm, respectively — i.e. double the energy requirement. [Pg.205]

Nylon A class of synthetic fibres and plastics, polyamides. Manufactured by condensation polymerization of ct, oj-aminomonocarboxylic acids or of aliphatic diamines with aliphatic dicarboxylic acids. Also rormed specifically, e.g. from caprolactam. The different Nylons are identified by reference to the carbon numbers of the diacid and diamine (e.g. Nylon 66 is from hexamethylene diamine and adipic acid). Thermoplastic materials with high m.p., insolubility, toughness, impact resistance, low friction. Used in monofilaments, textiles, cables, insulation and in packing materials. U.S. production 1983 11 megatonnes. [Pg.284]

Polyamides from diamines and dibasic acids. The polyamides formed from abphatic diamines (ethylene- to decamethylene-diamine) and abphatic dibasic acids (oxabc to sebacic acid) possess the unusual property of forming strong fibres. By suitable treatment, the fibres may be obtained quite elastic and tough, and retain a high wet strength. These prpperties render them important from the commercial point of view polyamides of this type are cabed nylons The Nylon of commerce (a 66 Nylon, named after number of carbon atoms in the two components) is prepared by heating adipic acid and hexamethylenediamine in an autoclave ... [Pg.1019]

The first 6 m nylon 66 stands for the number of carbons m the diamine the second for the number of carbons m the dicarboxylic acid Nylon 66 was an im mediate success and fostered the development of a large number of related polyamides many of which have also found their niche in the marketplace... [Pg.868]

The polyamides poly(hexamethylene sebacamide) and poly(hexamethylene adipamide) are also widely known as nylon-6,10 and nylon-6,6, respectively. The numbers following the word nylon indicate the number of carbon atoms in the diamine and dicarboxylic acid, in that order. On the basis of this same system, poly (e-caprolactam) is also known as nylon-6. [Pg.22]

The thermal protection system of the space shutde is composed mainly of subliming or melting ablators that are used below their fusion or vaporization reaction temperatures (42). In addition to the carbon-carbon systems discussed above, a flexible reusable surface insulation composed of Nomex felt substrate, a Du Pont polyamide fiber material, is used on a large portion of the upper surface. High and low temperature reusable surface insulation composed of siHca-based low density tiles are used on the bottom surface of the vehicle, which sees a more severe reentry heating environment than does the upper surface of the vehicle (43). [Pg.5]

Carboxyhc acids react with aryl isocyanates, at elevated temperatures to yield anhydrides. The anhydrides subsequently evolve carbon dioxide to yield amines at elevated temperatures (70—72). The aromatic amines are further converted into amides by reaction with excess anhydride. Ortho diacids, such as phthahc acid [88-99-3J, react with aryl isocyanates to yield the corresponding A/-aryl phthalimides (73). Reactions with carboxyhc acids are irreversible and commercially used to prepare polyamides and polyimides, two classes of high performance polymers for high temperature appHcations where chemical resistance is important. Base catalysis is recommended to reduce the formation of substituted urea by-products (74). [Pg.452]

Without other alternatives, the carboxyalkyl radicals couple to form dibasic acids HOOC(CH)2 COOH. In addition, the carboxyalkyl radical can be used for other desired radical reactions, eg, hydrogen abstraction, vinyl monomer polymerization, addition of carbon monoxide, etc. The reactions of this radical with chloride and cyanide ions are used to produce amino acids and lactams employed in the manufacture of polyamides, eg, nylon. [Pg.113]

Available Forms. Phthalocyanines are available as powders, in paste, or Hquid forms. They can be dispersed in various media suitable for aqueous, nonaqueous, or multipurpose systems, eg, polyethylene, polyamide, or nitrocellulose. Inert materials like clay, barium sulfate, calcium carbonates, or aluminum hydrate are the most common soHd extenders. Predispersed concentrates of the pigments, like flushes, are interesting for manufacturers of paints and inks (156), who do not own grinding or dispersing equipment. Pigment—water pastes, ie, presscakes, containing 50—75% weight of water, are also available. [Pg.506]

The nomenclature (qv) of polyamides is fraught with a variety of systematic, semisystematic, and common naming systems used variously by different sources. In North America the common practice is to call type AB or type AABB polyamides nylon-x or nylon-respectively, where x refers to the number of carbon atoms between the amide nitrogens. For type AABB polyamides, the number of carbon atoms in the diamine is indicated first, followed by the number of carbon atoms in the diacid. For example, the polyamide formed from 6-aminohexanoic acid [60-32-2] is named nylon-6 [25038-54-4], that formed from 1,6-hexanediamine [124-09-4] or hexamethylenediamine and dodecanedioic acid [693-23-2] is called nylon-6,12 [24936-74-1]. In Europe, the common practice is to use the designation "polyamide," often abbreviated PA, instead of "nylon" in the name. Thus, the two examples above become PA-6 and PA-6,12, respectively. PA is the International Union of Pure and AppHed Chemistry (lUPAC) accepted abbreviation for polyamides. [Pg.215]

Because the rules for organic nomenclature determine the priority of naming different carbon chains from their relative lengths, the systematic names for type AABB polyamides depend on the relative length of the carbon chains between the amide nitrogens and the two carbonyl functions of the polymer for aUphatic nylon-Ayy, when x < the lUPAC name is poly[imino-R imino(l2y-dioxo-R )]. When x > then the name is... [Pg.216]

Finally, when polyamides containing four or five carbon diacids, ie, succinic acid [110-15-6] and glutaric acid [110-94-1], respectively, are heated, they form cychc imides that cap the amine ends and prevent high molecular weights from being achieved (84). For nylon-x,4, n = 1 and for nylon-x,5, n = 2. [Pg.227]

Other noncychc reactions are observed, especially in polyamides of longer carbon chain monomers for example, the linear analogue to the cychc amine reaction is diamine coupling (eq. 10) to form secondary amines that can act as branch points (eq. 11). [Pg.227]

Oxidation. AH polyamides are susceptible to oxidation. This involves the initial formation of a free radical on the carbon alpha to the NH group, which reacts to form a peroxy radical with subsequent chain reactions leading to chain scission and yellowing. As soon as molten nylon is exposed to air it starts to discolor and continues to oxidize until it is cooled to below 60°C. It is important, therefore, to minimize the exposure of hot nylon to air to avoid discoloration or loss of molecular weight. Similarly, nylon parts exposed to high temperature in air lose their properties with time as a result of oxidation. This process can be minimized by using material containing stabilizer additives. [Pg.270]

Figure 4.11 Zig-zag effect on melting points with increasing number of carbon atoms in (a) polyurethanes of type -(CH2)400CNH (CH2)nNHCOO- and (b) polyamides of type -(CH2)r,CONH-... Figure 4.11 Zig-zag effect on melting points with increasing number of carbon atoms in (a) polyurethanes of type -(CH2)400CNH (CH2)nNHCOO- and (b) polyamides of type -(CH2)r,CONH-...
These polymers, typical of polyamides with fewer than four main chain carbon atoms in the repeating unit, decompose before melting and have to be processed from solution. Several of the polymers may, however, be spun into fibres. Over thirty years ago Courtaulds produced silk-like fibres on an experimental commercial scale from poly-(L-alanine) and from poly-(a-methyl-L-glutamate). The latter material is also said to be in use as a synthetic leather in Japan. The... [Pg.508]


See other pages where 11-carbon polyamide is mentioned: [Pg.93]    [Pg.78]    [Pg.3402]    [Pg.93]    [Pg.239]    [Pg.73]    [Pg.317]    [Pg.309]    [Pg.216]    [Pg.216]    [Pg.219]    [Pg.223]    [Pg.224]    [Pg.226]    [Pg.228]    [Pg.235]    [Pg.240]    [Pg.246]    [Pg.249]    [Pg.250]    [Pg.266]    [Pg.52]    [Pg.438]    [Pg.295]    [Pg.337]    [Pg.61]    [Pg.151]    [Pg.139]    [Pg.71]    [Pg.502]    [Pg.507]   
See also in sourсe #XX -- [ Pg.11 , Pg.93 ]




SEARCH



© 2024 chempedia.info