Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon monoxide surface interactions with

It ought to be remarked that, in both cases, the quantity of carbon monoxide which interacts with C03"(ads) ions (second adsorption of carbon monoxide. Table V) is not large enough to convert all C03 (ads) ions into carbon dioxide. This was explained, in the case of NiO(200°) by the stability of C03"(ads) ions formed on the most active sites of the surface when the heat produced is 134 kcal/mole. In the case of NiO(250°), calorimetric data do not explain the nonreactivity of a fraction of C03 (ads) ions. However, calorimetric curves (for examples of such curves, see Figs. 34 and 36), as well as the variation of the electrical conductivity of the sample with time (25), show that, in both cases, interaction (7) is very slow compared to interaction (5a). We believe therefore that the nonreactivity of a fraction of C03"(ads) ions is related to equilibrium of interaction (7). The conversion of C03 (ads) by carbon monoxide into carbon dioxide is indeed increased for an increased pressure of carbon monoxide (42). [Pg.205]

Exchange reactions between bulk and adsorbed substances can be studied by on-line mass spectroscopy and isotope labeling. In this section the results on the interaction of methanol and carbon monoxide in solution with adsorbed methanol and carbon monoxide on platinum are reported [72], A flow cell for on-line MS measurements (Fig. 1.2) was used. 13C-labeled methanol was absorbed until the Pt surface became saturated. After solution exchange with base electrolyte a potential scan was applied. Parallel to the current-potential curve the mass intensity-potential for 13C02 was monitored. Both curves are given in Fig. 3.1a,b. A second scan was always taken to check the absence of bulk substances. [Pg.154]

The results of Wielers and co-workers have shown that Fe(II) is stabilized by some interaction with alumina. The stabilization may be due to the formation of FeAl204 or, more probably, to an interaction between ferrous oxide and an alumina or iron(II) aluminate surface. Kock and co-workers demonstrated the stabilization of Fe(II) by alumina using magnetic measurements. The authors studied the reduction of goethite (FeOOH), hematite (Fe203), a physical mix of FeOOH and alumina, and FeOOH deposited on alumina with carbon monoxide. They raised the temperature of their samples held in a flow of 5% carbon monoxide in helium, with a heating rate of 4.8 K min up to a temperature of 770 K and... [Pg.182]

The saturation coverage during chemisorption on a clean transition-metal surface is controlled by the fonnation of a chemical bond at a specific site [5] and not necessarily by the area of the molecule. In addition, in this case, the heat of chemisorption of the first monolayer is substantially higher than for the second and subsequent layers where adsorption is via weaker van der Waals interactions. Chemisorption is often usefLil for measuring the area of a specific component of a multi-component surface, for example, the area of small metal particles adsorbed onto a high-surface-area support [6], but not for measuring the total area of the sample. Surface areas measured using this method are specific to the molecule that chemisorbs on the surface. Carbon monoxide titration is therefore often used to define the number of sites available on a supported metal catalyst. In order to measure the total surface area, adsorbates must be selected that interact relatively weakly with the substrate so that the area occupied by each adsorbent is dominated by intennolecular interactions and the area occupied by each molecule is approximately defined by van der Waals radii. This... [Pg.1869]

Even if it is assumed that the reaction is ionic, Occam s Razor would lead to the conclusion that the system is too complex and that the effort to keep it ionic is too great. It is difficult to undersand why step 8c is slow and why a simple uncharged complex would not be equally reasonable. We prefer a mechanism in which the carbon monoxide molecule is adsorbed parallel to the surface and in which the oxygen orbitals as well as the carbon orbitals of C=0 bond electrons interact with the metal. It seems reasonable that hydrogenolysis occurs exclusively only because the oxygen is held in some way while the two bonds are broken and it finally desorbs as water. The most attractive picture would be (a) adsorption of CO and H2 with both atoms on the surface... [Pg.18]

All of these results are consistent with the notion that surface migration of titanium oxide species Is an Important factor that contributes to the suppression of carbon monoxide chemisorption. The H2 chemisorption experiments on 1-2 ML of Ft, where no migration Is observed, strongly Indicate that electronic (bonding) Interactions are also occurring. Thus, for the tltanla system, both electronic Interactions and surface site blocking due to titanium oxide species must be considered In Interpreting SMSI effects. [Pg.86]

Finally, the term steric stabihzation coifid be used to describe protective transition-metal colloids with traditional ligands or solvents [38]. This stabilization occurs by (i) the strong coordination of various metal nanoparticles with ligands such as phosphines [48-51], thiols [52-55], amines [54,56-58], oxazolines [59] or carbon monoxide [51] (ii) weak interactions with solvents such as tetrahydrofuran or various alcohols. Several examples are known with Ru, Ft and Rh nanoparticles [51,60-63]. In a few cases, it has been estab-hshed that a coordinated solvent such as heptanol is present at the surface and acts as a weakly coordinating ligand [61]. [Pg.265]

On the surface of metal electrodes, one also hnds almost always some kind or other of adsorbed oxygen or phase oxide layer produced by interaction with the surrounding air (air-oxidized electrodes). The adsorption of foreign matter on an electrode surface as a rule leads to a lower catalytic activity. In some cases this effect may be very pronounced. For instance, the adsorption of mercury ions, arsenic compounds, or carbon monoxide on platinum electrodes leads to a strong decrease (and sometimes total suppression) of their catalytic activity toward many reactions. These substances then are spoken of as catalyst poisons. The reasons for retardation of a reaction by such poisons most often reside in an adsorptive displacement of the reaction components from the electrode surface by adsorption of the foreign species. [Pg.534]

It must be acknowledged, however, that the determination of the number of the different surface species which are formed during an adsorption process is often more difficult by means of calorimetry than by spectroscopic techniques. This may be phrased differently by saying that the resolution of spectra is usually better than the resolution of thermograms. Progress in data correction and analysis should probably improve the calorimetric results in that respect. The complex interactions with surface cations, anions, and defects which occur when carbon monoxide contacts nickel oxide at room temperature are thus revealed by the modifications of the infrared spectrum of the sample (75) but not by the differential heats of the CO-adsorption (76). Any modification of the nickel-oxide surface which alters its defect structure produces, however, a change of its energy spectrum with respect to carbon monoxide that is more clearly shown by heat-flow calorimetry (77) than by IR spectroscopy. [Pg.241]

Before analyzing the results of these, or similar, thermochemical cycles, the assumptions which have been made must be critically examined. Since the cycles are tested for different surface coverages, it is assumed first that the Q-0 curves represent correctly, in all cases, the distribution of reactive sites—the energy spectrum—on the surface of the adsorbent. This point has been discussed in the preceding section (Section VII.A). It is assumed moreover that, for instance, the first doses of carbon monoxide (8 = 0) interact with oxygen species adsorbed on the most reactive surface sites (0 = 0). This assumption, which is certainly not acceptable in all cases, ought to be verified directly. This may be achieved in separate experiments by adsorbing limited amounts of the different reactants in the same se-... [Pg.248]

Carbonaceous species on metal surfaces can be formed as a result of interaction of metals with carbon monoxide or hydrocarbons. In the FTS, where CO and H2 are converted to various hydrocarbons, it is generally accepted that an elementary step in the reaction is the dissociation of CO to form surface carbidic carbon and oxygen.1 The latter is removed from the surface through the formation of gaseous H20 and C02 (mostly in the case of Fe catalysts). The surface carbon, if it remains in its carbidic form, is an intermediate in the FTS and can be hydrogenated to form hydrocarbons. However, the surface carbidic carbon may also be converted to other less reactive forms of carbon, which may build up over time and influence the activity of the catalyst.15... [Pg.52]

An interesting oxycarbonyl cluster has been isolated in the reaction of 0s04 with CO under pressure. This was an intermediate in the preparation of the Os3(CO)i2. The X-ray analysis has established this as a cubane structure, with an oxygen bridging the four faces of the osmium tetrahedron. The Os-Os distance is 3.20 A and implies no bonding between the osmium centers. This molecule is of obvious interest as a potential model in the studies of carbon monoxide interaction with metal oxides and also metal surfaces, when the formation of metal oxides occurs (200). [Pg.325]

The air emissions of fossil fuel combustion are dispersed and diluted within the atmosphere, eventually falling or migrating to the surface of the Earth or ocean at various rates. Until recently, most attention was focused on the so-called primary pollutants of fossil fuel combustion that are harmful to human health oxides of sulphur and nitrogen, carbon monoxide, suspended particles (including soot), heavy metals, and products of incomplete combustion. These pollutants are most concentrated in urban or industrialized areas close to large or multiple sources. However, the primary pollutants may interact with each other, and with atmospheric constituents and sunlight, forming secondary pollutants that disperse far beyond the urban-... [Pg.153]


See other pages where Carbon monoxide surface interactions with is mentioned: [Pg.250]    [Pg.86]    [Pg.169]    [Pg.252]    [Pg.4]    [Pg.4594]    [Pg.49]    [Pg.658]    [Pg.714]    [Pg.1781]    [Pg.48]    [Pg.80]    [Pg.153]    [Pg.105]    [Pg.124]    [Pg.163]    [Pg.168]    [Pg.106]    [Pg.230]    [Pg.127]    [Pg.63]    [Pg.249]    [Pg.249]    [Pg.251]    [Pg.254]    [Pg.259]    [Pg.88]    [Pg.105]    [Pg.238]    [Pg.83]    [Pg.176]    [Pg.113]    [Pg.354]    [Pg.228]    [Pg.181]    [Pg.188]   
See also in sourсe #XX -- [ Pg.2 , Pg.40 , Pg.41 ]




SEARCH



Carbon monoxide interactions

Carbon monoxide interactions with

Carbon monoxide surface

Carbon surfaces

Interacting Surface

Surface, interaction with

© 2024 chempedia.info