Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Viscosity carbon dioxide

Available data on the thermodynamic and transport properties of carbon dioxide have been reviewed and tables compiled giving specific volume, enthalpy, and entropy values for carbon dioxide at temperatures from 255 K to 1088 K and at pressures from atmospheric to 27,600 kPa (4,000 psia). Diagrams of compressibiHty factor, specific heat at constant pressure, specific heat at constant volume, specific heat ratio, velocity of sound in carbon dioxide, viscosity, and thermal conductivity have also been prepared (5). [Pg.18]

The basis of this process was the injection of sodium carbonate solution into the viscose, although direct injection of carbon dioxide gas that reacts with the viscose soda to form sodium carbonate could also be used (44). The carbonate route yielded a family of inflated fibers culminating in the absorbent multilimbed super inflated (SI) fiber (Eig. 5c). [Pg.350]

The polyesterification reaction is normally carried out in stainless steel vessels ranging from 8,000—20,000 L, heated and cooled through internal cods (Fig. 1). Blade agitators revolving at 70—200 rpm ate effective in stirring the low viscosity mobde reactants, which ate maintained under an inert atmosphere of nitrogen or carbon dioxide during the reaction at temperatures up to 240°C. [Pg.314]

K, have been tabulated (2). Also given are data for superheated carbon dioxide vapor from 228 to 923 K at pressures from 7 to 7,000 kPa (1—1,000 psi). A graphical presentation of heat of formation, free energy of formation, heat of vaporization, surface tension, vapor pressure, Hquid and vapor heat capacities, densities, viscosities, and thermal conductivities has been provided (3). CompressibiHty factors of carbon dioxide from 268 to 473 K and 1,400—69,000 kPa (203—10,000 psi) are available (4). [Pg.18]

Equations for viscosity at different temperatures, pressures, and thermal conductivity have also been provided (5). The vapor pressure function for carbon dioxide in terms of reduced temperatures and pressure is as foUows ... [Pg.18]

Diagrams of isobaric heat capacity (C and thermal conductivity for carbon dioxide covering pressures from 0 to 13,800 kPa (0—2,000 psi) and 311 to 1088 K have been prepared. Viscosities at pressures of 100—10,000 kPa (1—100 atm) and temperatures from 311 to 1088 K have been plotted (9). [Pg.18]

Conventional nitrocellulose lacquer finishing leads to the emission of large quantities of solvents into the atmosphere. An ingeneous approach to reducing VOC emissions is the use of supercritical carbon dioxide as a component of the solvent mixture (172). The critical temperature and pressure of CO2 are 31.3°C and 7.4 MPa (72.9 atm), respectively. Below that temperature and above that pressure, CO2 is a supercritical fluid. It has been found that under these conditions, the solvency properties of CO2 ate similar to aromatic hydrocarbons (see Supercritical fluids). The coating is shipped in a concentrated form, then metered with supercritical CO2 into a proportioning airless spray gun system in such a ratio as to reduce the viscosity to the level needed for proper atomization. VOC emission reductions of 50% or more are projected. [Pg.357]

Example 25 Estimate the Vapor Viscosity of Carbon Dioxide at... [Pg.49]

Halocarbons have the further advantage of reducing the viscosity of the reaction mixture and, where used as the main blowing agent instead of the carbon dioxide produced by the isocyanate-water reaction, cheaper foams are obtained since less isocyanate is used. The reader should, however, note the comments made about the use of chlorofluoroearbons and their effect on the ozone layer made in Section 27.5.4. [Pg.801]

The combination of ionic liquids with supercritical carbon dioxide is an attractive approach, as these solvents present complementary properties (volatility, polarity scale.). Compressed CO2 dissolves quite well in ionic liquid, but ionic liquids do not dissolve in CO2. It decreases the viscosity of ionic liquids, thus facilitating mass transfer during catalysis. The separation of the products in solvent-free form can be effective and the CO2 can be recycled by recompressing it back into the reactor. Continuous flow catalytic systems based on the combination of these two solvents have been reported [19]. This concept is developed in more detail in Section 5.4. [Pg.266]

In some cases, the solids themselves are subjected to extraction by a solvent. For example, in one process used to decaffeinate coffee, the coffee beans are mixed with activated charcoal and a high-pressure stream of supercritical carbon dioxide (carbon dioxide at high pressure and above its critical temperature) is passed over them at approximately 90°C. A supercritical solvent is a highly mobile fluid with a very low viscosity. The carbon dioxide removes the soluble caffeine preferentially without extracting the flavoring agents and evaporates without leaving a harmful residue. [Pg.475]

Another EOR approach to reducing the viscosity of oil in the reservoir is ntiscible flooding— the injection of fluids that mix with the oil under reservoir conditions. Such fluids include carbon dioxide, light hydrocarbons, and ititrogen. Supply and cost of carbon dioxide are often more favorable than for other injectants. Extensive research and field testing have established the techiucal viability of miscible flooding, and a nnmber of commercial carbon dioxide miscible flooding projects are in operation. [Pg.96]

A supercritical fluid exhibits physical-chemical properties intermediate between those of liquids and gases. Mass transfer is rapid with supercritical fluids. Their dynamic viscosities are nearer to those in normal gaseous states. In the vicinity of the critical point the diffusion coefficient is more than 10 times that of a liquid. Carbon dioxide can be compressed readily to form a liquid. Under typical borehole conditions, carbon dioxide is a supercritical fluid. [Pg.11]

In situ visbreaking with steam and a catalyst can produce crude oils with reduced viscosity [821]. A special variety of visbreaking that involves a partial steam reforming, which produces smaller hydrocarbon components and additional hydrogen free radicals and carbon dioxide, has been described. [Pg.216]

L. M. Ruzin, O. E. Pleshkova, and L. V. Konovalova. Generation of carbon dioxide during thermal steam treatment of carbonate reservoirs containing high-viscosity oil. Neft Khoz, (ll) 59-62, November 1990. [Pg.454]

Supercritical fluid extraction (SFE) is a technique in which a supercritical fluid [formed when the critical temperature Tf) and critical pressure Pf) for the fluid are exceeded simultaneously] is used as an extraction solvent instead of an organic solvent. By far the most common choice of a supercritical fluid is carbon dioxide (CO2) because CO2 has a low critical temperature (re = 31.1 °C), is inexpensive, and is safe." SFE has the advantage of lower viscosity and improved diffusion coefficients relative to traditional organic solvents. Also, if supercritical CO2 is used as the extraction solvent, the solvent (CO2) can easily be removed by bringing the extract to atmospheric pressure. Supercritical CO2 itself is a very nonpolar solvent that may not have broad applicability as an extraction solvent. To overcome this problem, modifiers such as methanol can be used to increase the polarity of the SFE extraction solvent. Another problem associated with SFE using CO2 is the co-extraction of lipids and other nonpolar interferents. To overcome this problem, a combination of SFE with SPE can be used. Stolker et al." provided a review of several SFE/SPE methods described in the literature. [Pg.306]

Silica has often been modified with silver for argentation chromatography because of the additional selectivity conferred by the interactions between silver and Jt-bonds of unsaturated hydrocarbons. In a recent example, methyl linoleate was separated from methyl linolenate on silver-modified silica in a dioxane-hexane mixture.23 Bonded phases using amino or cyano groups have proved to be of great utility. In a recent application on a 250 x 1-mm Deltabond (Keystone Scientific Belief onte, PA) Cyano cyanopropyl column, carbon dioxide was dissolved under pressure into the hexane mobile phase, serving to reduce the viscosity from 6.2 to 1 MPa and improve efficiency and peak symmetry.24 It was proposed that the carbon dioxide served to suppress the effect of residual surface silanols on retention. [Pg.10]

For a miscible displacement at the required reservoir conditions, carbon dioxide must exist as a dense fluid (in the range 0.5 to 0.8g/cc). Unfortunately, the viscosity of even dense CO2 is in the range of 0.03 to 0.08 cp, no more than one twentieth that of crude oil. When CO2 is used directly to displace the crude, the unfavorable viscosity ratio produces inefficient oil displacement by causing fingering of the CO2, due to frontal instability. In addition, the unfavorable mobility ratio accentuates flow non-... [Pg.502]


See other pages where Viscosity carbon dioxide is mentioned: [Pg.211]    [Pg.26]    [Pg.341]    [Pg.211]    [Pg.26]    [Pg.341]    [Pg.252]    [Pg.338]    [Pg.279]    [Pg.334]    [Pg.274]    [Pg.469]    [Pg.110]    [Pg.290]    [Pg.339]    [Pg.401]    [Pg.408]    [Pg.2000]    [Pg.784]    [Pg.4]    [Pg.606]    [Pg.43]    [Pg.384]    [Pg.11]    [Pg.11]    [Pg.730]    [Pg.241]    [Pg.817]    [Pg.822]    [Pg.797]    [Pg.19]    [Pg.503]    [Pg.544]    [Pg.403]    [Pg.14]   
See also in sourсe #XX -- [ Pg.6 , Pg.7 , Pg.8 , Pg.9 , Pg.10 , Pg.11 , Pg.12 , Pg.13 , Pg.14 , Pg.15 , Pg.16 , Pg.17 , Pg.18 , Pg.19 , Pg.20 , Pg.37 ]

See also in sourсe #XX -- [ Pg.6 , Pg.7 , Pg.8 , Pg.9 , Pg.10 , Pg.11 , Pg.12 , Pg.13 , Pg.14 , Pg.15 , Pg.16 , Pg.17 , Pg.18 , Pg.19 , Pg.20 , Pg.37 , Pg.229 ]




SEARCH



Carbon dioxide kinematic viscosity

Carbon viscosity

Viscosity carbon dioxide, on saturation line

Viscosity carbonization

Viscosity nitrogen + carbon dioxide

Viscosity of Carbon Dioxide along the

Viscosity of Carbon Dioxide along the Saturation Line

© 2024 chempedia.info