Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermal conductivity Carbon dioxide

Changes in thermal conductivity, e.g. carbon dioxide in flue gas. [Pg.186]

Detector cooling often is accompHshed by providing good thermal conductivity to a suitable cryogen (2). The most readily available coolants are sohd carbon dioxide [124-38-9] [124-38-9] at 195 K, Hquid nitrogen, N2, at 77 K, andhquid hehum. He, at 4.2 K (see Carbon dioxide Helium group ... [Pg.423]

K, have been tabulated (2). Also given are data for superheated carbon dioxide vapor from 228 to 923 K at pressures from 7 to 7,000 kPa (1—1,000 psi). A graphical presentation of heat of formation, free energy of formation, heat of vaporization, surface tension, vapor pressure, Hquid and vapor heat capacities, densities, viscosities, and thermal conductivities has been provided (3). CompressibiHty factors of carbon dioxide from 268 to 473 K and 1,400—69,000 kPa (203—10,000 psi) are available (4). [Pg.18]

Available data on the thermodynamic and transport properties of carbon dioxide have been reviewed and tables compiled giving specific volume, enthalpy, and entropy values for carbon dioxide at temperatures from 255 K to 1088 K and at pressures from atmospheric to 27,600 kPa (4,000 psia). Diagrams of compressibiHty factor, specific heat at constant pressure, specific heat at constant volume, specific heat ratio, velocity of sound in carbon dioxide, viscosity, and thermal conductivity have also been prepared (5). [Pg.18]

Equations for viscosity at different temperatures, pressures, and thermal conductivity have also been provided (5). The vapor pressure function for carbon dioxide in terms of reduced temperatures and pressure is as foUows ... [Pg.18]

Diagrams of isobaric heat capacity (C and thermal conductivity for carbon dioxide covering pressures from 0 to 13,800 kPa (0—2,000 psi) and 311 to 1088 K have been prepared. Viscosities at pressures of 100—10,000 kPa (1—100 atm) and temperatures from 311 to 1088 K have been plotted (9). [Pg.18]

Example 28 Estimate Thermal Conductivity of Carbon Dioxide... [Pg.49]

For materials of equivalent density water-blown polyurethanes and the hydrocarbon-blown polystyrene foams have similar thermal conductivities. This is because the controlling factor determining the conductivity is the nature of the gas present in the cavities. In both of the above cases air, to all intents and purposes, normally replaces any residual blowing gas either during manufacture or soon after. Polyurethane foams produced using fluorocarbons have a lower thermal conductivity (0.12-0.15 Btu in fr h °F ) (0.017-0.022 W/mK) because of the lower conductivity of the gas. The comparative thermal conductivities for air, carbon dioxide and monofluorotrichloromethane are given in Table 27.3. [Pg.802]

Air vents are most effective when they are fitted at the end of a length of 300 mm or 450 mm of uninsulated pipe that can act as a collecting/cooling leg. Air is an excellent insulating material, having a thermal conductivity about 2200 times less than that of iron. The last place where it can be allowed to collect is in the steam space of heat exchangers. Further, as it contains oxygen or carbon dioxide, which dissolve readily in any subcooled condensate that may be present, the presence of air initiates corrosion of the plant and the condensate return system. [Pg.325]

Thermal Conductivity Detector In the thermal conductivity detector (TCD), the temperature of a hot filament changes when the analyte dilutes the carrier gas. With a constant flow of helium carrier gas, the filament temperature will remain constant, but as compounds with different thermal conductivities elute, the different gas compositions cause heat to be conducted away from the filament at different rates, which in turn causes a change in the filament temperature and electrical resistance. The TCD is truly a universal detector and can detect water, air, hydrogen, carbon monoxide, nitrogen, sulfur dioxide, and many other compounds. For most organic molecules, the sensitivity of the TCD detector is low compared to that of the FID, but for the compounds for which the FID produces little or no signal, the TCD detector is a good alternative. [Pg.201]

The catal5fsts were tested for CO oxidation in a flow reactor using a 2.5 % CO in dry air mixture at a fixed flow rate of 200 seem. Thirty milligrams of the catalyst were used for each experimental run. The reaction was conducted at 298, 323, 373 and 473 K with 75 minutes duration at each temperature. The carbon monoxide conversion to carbon dioxide was monitored by an online gas chromatogr h equipped with a CTR-1 column and a thermal conductivity... [Pg.413]

Carbon dioxide chemisorptions were carried out on a pulse-flow microreactor system with on-line gas chromatography using a thermal conductivity detector. The catalyst (0.4 g) was heated in flowing helium (40 cm3min ) to 723 K at 10 Kmin"1. The samples were held at this temperature for 2 hours before being cooled to room temperature and maintained in a helium flow. Pulses of gas (—1.53 x 10"5 moles) were introduced to the carrier gas from the sample loop. After passage through the catalyst bed the total contents of the pulse were analysed by GC and mass spectroscopy (ESS MS). [Pg.364]

Weliky et al. [154] described a procedure for the determination of both organic and inorganic carbon in a single sample of a marine deposit. Carbonate carbon is determined from the carbon dioxide evolved by treatment of the sample with phosphoric acid the residue is then treated with a concentrated solution of dichromate and sulfuric acid to release carbon dioxide from the organic matter. The carbon dioxide produced at the two stages of the analysis is estimated using a carb on analyser based on the thermal conductivity principle. In addition, total carbon content is determined on another subsample using the dry combustion furnace. This provides a check on the values determined by the phosphoric acid dichromate technique. [Pg.503]

Recently, the gas types nitrogen, carbon dioxide and helium were shown to have no influence on the reaction rate at 226 °C over 6h [32], Similarly, no difference between nitrogen and carbon dioxide at 210 °C over 24 h was observed [41], An early study [31] did show that the gas type influenced the reaction rate, but it has since been suggested that the different heat capacities and thermal conductivities of the gases affected the experimental temperatures [32],... [Pg.158]

It is known that increased char yield is usually associated with improved flammability behavior ( 1). This can be understood if one considers that the volatile flammable products can only diffuse with difficulty through the char, and that the thermal conductivity of a porous char layer is relatively poor (2). The structure of the polymer can contribute to the amount of char formed based on the character of the functional groups present and the nature of the backbone (2,3). Ritchie ( ) found that for a series of unsaturated polyesters and their copolymers, the temperatures at which carbon dioxide is eliminated was in the range of 280 to 345°C depending on the structure of the polyester. Aliphatic polyesters and their copolymers have less thermal... [Pg.209]

The dimensional stability of low density, water blown rigid PU foams for pour-in-place thermal insulation applications was improved by the use of a phthalic anhydride based polyester polyol containing a dispersed cell opening agent. The foam systems obtained allowed some of the carbon dioxide to be released through the cell windows immediately after filling of the cavity, and to be rapidly replaced by air. Studies were made of the flowability, density, open cell content, dimensional stability, mechanical properties, thermal conductivity and adhesion (particularly to flame treated PE) of these foams. These properties were examined in comparison with those of HCFC-141b blown foams. 21 refs. [Pg.82]

Elemental composition Ba 69.58%, C 6.09%, O 24.32%. The compound is digested with nitric acid under heating and the solution is analyzed for barium by atomic absorption or emission spectrometry (see Barium). Carbon dioxide may be determined by treating a small amount of the solid with dilute HCl and analyzing the evolved gas by GC using a thermal conductivity detector or a mass spectrometer. The characteristic mass of CO2 is 44. [Pg.83]

The gases exiting the reactor pass through a Beckman 565 infrared CO2 analyzer, which continuously monitored the production of carbon dioxide. Gas composition analysis was performed on-line using a Hewlett Packard 5890 II gas chromatograph, equipped with both a thermal conductivity and a flame ionization detector and a Porapak-Q column. Additional experimental details are given elsewhere (9). [Pg.412]


See other pages where Thermal conductivity Carbon dioxide is mentioned: [Pg.123]    [Pg.265]    [Pg.13]    [Pg.13]    [Pg.25]    [Pg.141]    [Pg.468]    [Pg.522]    [Pg.349]    [Pg.411]    [Pg.412]    [Pg.803]    [Pg.317]    [Pg.1090]    [Pg.675]    [Pg.206]    [Pg.121]    [Pg.121]    [Pg.565]    [Pg.245]    [Pg.62]    [Pg.123]    [Pg.45]    [Pg.298]    [Pg.134]    [Pg.16]    [Pg.9]    [Pg.361]    [Pg.88]    [Pg.490]    [Pg.776]    [Pg.468]   
See also in sourсe #XX -- [ Pg.6 , Pg.7 , Pg.8 , Pg.9 , Pg.10 , Pg.11 , Pg.12 , Pg.13 , Pg.14 , Pg.15 , Pg.16 , Pg.17 , Pg.18 , Pg.19 , Pg.20 , Pg.37 , Pg.219 ]

See also in sourсe #XX -- [ Pg.207 ]

See also in sourсe #XX -- [ Pg.6 , Pg.7 , Pg.8 , Pg.9 , Pg.10 , Pg.11 , Pg.12 , Pg.13 , Pg.14 , Pg.15 , Pg.16 , Pg.17 , Pg.18 , Pg.19 , Pg.20 , Pg.37 , Pg.241 ]




SEARCH



Carbon dioxide conductivity

Carbon dioxide thermal

Conductive carbon

Thermal conductivity carbon dioxide + ethane

© 2024 chempedia.info