Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon dioxide liquid, physical properties

Liquid carbon dioxide is discussed on page 261. Carbon dioxide gas is commonly used for carbonating drinks, in fire extinguishers, for gas-shielding of welding and in shell moulding in foundries. Its physical and toxicological properties are summarized in Tables 8.5, 8.6 and 5.29. [Pg.278]

Measurement of the absorption rate of carbon dioxide in aqueous solutions of sodium hydroxide has been used in some of the more recent work on mass-transfer rate in gas-liquid dispersions (D6, N3, R4, R5, V5, W2, W4, Y3). Although this absorption has a disadvantage because of the high solubility of C02 as compared to 02, it has several advantages over the sulfite-oxidation method. For example, it is relatively insensitive to impurities, and the physical properties of the liquid can be altered by the addition of other liquids without appreciably affecting the chemical kinetics. Yoshida and... [Pg.301]

Molecules am act one another. Fiuni that simple fact spring fundamentally important consequences. Rivers, lakes, and oceans exist because water molecules attract one another and form a liquid. Without that liquid, there would be no life. Without forces between molecules, our flesh would drip off our bones and the oceans would be gas. Less dramatically, the forces between molecules govern the physical properties of bulk matter and help to account for the differences in the substances around us. They explain why carbon dioxide is a gas that we exhale, why wood is a solid that we can stand on, and why ice floats on water. At very close range, molecules also repel one another. When pressed together, molecules resist further compression. [Pg.299]

Liquid carbon dioxide produces a colourless, dense, non-flammable vapour with a slightly pungent odour and characteristic acid taste . Physical properties are given in Table 8.5 (see also page 277). Figure 8.1 demonstrates the effect of temperature on vapour pressure. [Pg.262]

Cadmium, 118 Capture velocity, 408 Carbon dioxide extinguisher, 223 liquid, 261, 278 physical properties, 262 physiological properties, 151, 152, 264, 279 precautions, 152, 262, 280 sources, 151 Carbon monoxide ... [Pg.600]

A supercritical fluid exhibits physical-chemical properties intermediate between those of liquids and gases. Mass transfer is rapid with supercritical fluids. Their dynamic viscosities are nearer to those in normal gaseous states. In the vicinity of the critical point the diffusion coefficient is more than 10 times that of a liquid. Carbon dioxide can be compressed readily to form a liquid. Under typical borehole conditions, carbon dioxide is a supercritical fluid. [Pg.11]

Figure 12.3. Properties of liquid carbon dioxide. Adapted from Daubert, T. E. Danner, R. P. Data Compilation Tables of Properties of Pure Compounds. Design Institute for Physical Property Data, American Institute of Chemical Engineers New York, 1985. Figure 12.3. Properties of liquid carbon dioxide. Adapted from Daubert, T. E. Danner, R. P. Data Compilation Tables of Properties of Pure Compounds. Design Institute for Physical Property Data, American Institute of Chemical Engineers New York, 1985.
The properties and physical chemistry of liquid and supercritical carbon dioxide have been extensively reviewed (Kiran and Brennecke, 1992), as have many fundamentals and applications for separation, chromatography, and extraction (McHugh and Krukonis, 1994). The phase diagram for pure C02 is illustrated in Figure 1.1. Due to its relatively low critical point, C02 is frequently used in the supercritical state. Other common supercritical fluids require higher temperatures and pressures, such as water with Tc = 374.2 °C and Pc = 220.5 bar, while propane (Tc = 96.7 °C and Pc = 42.5 bar) and ethane (Tc = 32.2 °C and Pc = 48.8 bar) have lower critical pressures but are flammable (McHugh and Krukonis, 1994). [Pg.272]

SCF). This fluid does not any more have a free surface, that characterizes a liquid as opposed to a vapour, but may serve as a useful solvent just the same. Some substances that are gases at ambient conditions can be compressed by high pressures to become supercritical fluids and solvents, a well-known example being carbon dioxide, used extensively as an extractant for foodstuffs and pharmaceuticals. Some physical properties—the critical temperature Tc, pressure Pc, and density dc—of supercritical solvents are shown in Table 3.3. [Pg.130]

Determine the individual HTUs for the liquid and gas resistances at the bottom and top of the tower. Vendor data for carbon dioxide desorption from water for 2-in FR packing, when corrected to the temperature and system physical properties for this example, give// = 0.83 ft and Hu = 0.80 ft. [Pg.430]

The physical properties of saturated vapor carbon dioxide are listed in table 2.2 and those for the saturated liquid are in table 2.3. The... [Pg.25]

In addition to fluorous solvents and ionie liquids, supercritical fluids sc-fluids, scf s), sueh as supercritical carbon dioxide (se-C02), constitute a third class of neoteric solvents that can be used as reaction media. Although sc-fluids have been known for a long time and have been advantageously used as eluants in extraction and chromatography processes (see Sections A.6 and A.7 in the Appendix), their application as reaction media for chemical processes has become more popular only during the last decade. Some of their physical properties and the supercritical conditions necessary for their existence have already been described in Section 3.2 (see Figure 3-2 and Table 3-4) see also references [209, 211-220, 224-230] to Chapter 3 for reviews on sc-fluids and their applications (particularly for SC-CO2 and SC-H2O). [Pg.324]

When carbon dioxide is heated beyond its critical point, with a critical temperature of tc = 31.0 °C, a critical pressure of pc = 7.38 MPa, and a critical density of Pc = 0.47 g cm , the gaseous and the liquid phase merge into a single supercritical phase (SC-CO2) with particular new physical properties very low surface tension, low viscosity, high diffusion rates, pressure-dependent adjustable density and solvation capability ( solvation power ), and miscibility with many reaction gases (H2, O2, etc.). It can dissolve solids and liquids. The relative permittivity of an sc-fluid varies linearly with density, e.g. for SC-CO2 at 40 °C, r = 1.4 1.6 on going from 108 to 300 bar. This... [Pg.324]

As has already been described in Table 9.1, transport properties are enhanced in CXLs compared with conventional solvents. For example, diffusivities of solutes are enhanced up to 7-fold in carbon dioxide expanded methanol, with little effect being seen on the nature of the solute (benzene pyrazine). Therefore, it is thought that physical rather than chemical interactions are causing this phenomenon, including reduced viscosity and surface tension upon carbon dioxide addition. The solubility of solids, liquids and gases in CXLs will... [Pg.190]


See other pages where Carbon dioxide liquid, physical properties is mentioned: [Pg.82]    [Pg.75]    [Pg.260]    [Pg.97]    [Pg.242]    [Pg.132]    [Pg.2]    [Pg.821]    [Pg.55]    [Pg.15]    [Pg.203]    [Pg.261]    [Pg.246]    [Pg.479]    [Pg.375]    [Pg.203]    [Pg.241]    [Pg.241]    [Pg.16]    [Pg.28]    [Pg.618]    [Pg.193]    [Pg.42]    [Pg.104]    [Pg.657]    [Pg.265]    [Pg.62]    [Pg.317]    [Pg.48]    [Pg.230]    [Pg.88]    [Pg.3903]    [Pg.358]    [Pg.409]   
See also in sourсe #XX -- [ Pg.35 ]




SEARCH



Carbon dioxide liquid

Carbon dioxide physical

Carbon dioxide physical properties

Carbon dioxide, properties

Carbon liquid

Carbon liquid, properties

Carbon physical properties

Carbon properties

Carbonates physical properties

Carbonates properties

Dioxides properties

Liquid , properties

Liquid carbon dioxide, properties

Liquid physical properties

Physical carbonate

Physical carbons

© 2024 chempedia.info