Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon dioxide properties

Composition - which describes the proportion of hydrocarbon components (C, - Cj+) (which determine the fluid properties), and how many non-hydrocarbon substances (e.g. nitrogen, carbon dioxide and hydrogen sulphide) are present. [Pg.236]

Reactions of Picric Acid, (i) The presence of the three nitro groups in picric acid considerably increases the acidic properties of the phenolic group and therefore picric acid, unlike most phenols, will evolve carbon dioxide from sodium carbonate solution. Show this by boiling picric acid with sodium carbonate solution, using the method described in Section 5, p. 330. The reaction is not readily shown by a cold saturated aqueous solution of picric acid, because the latter is so dilute that the sodium carbonate is largely converted into sodium bicarbonate without loss of carbon dioxide. [Pg.174]

It is less well known, but certainly no less important, that even with carbon dioxide as a drying agent, the supercritical drying conditions can also affect the properties of a product. Eor example, in the preparation of titania aerogels, temperature, pressure, the use of either Hquid or supercritical CO2, and the drying duration have all been shown to affect the surface area, pore volume, and pore size distributions of both the as-dried and calcined materials (34,35). The specific effect of using either Hquid or supercritical CO2 is shown in Eigure 3 as an iHustration (36). [Pg.3]

Fig. 3. Effect of using either liquid or supercritical carbon dioxide on the textural properties of titania aerogels calcined at the temperatures shown. (—), dried with Hquid carbon dioxide at 6 MPa and 283 K (-------), dried with supercritical carbon dioxide at 30 MPa and 323 K. Reproduced from Ref. 36. Fig. 3. Effect of using either liquid or supercritical carbon dioxide on the textural properties of titania aerogels calcined at the temperatures shown. (—), dried with Hquid carbon dioxide at 6 MPa and 283 K (-------), dried with supercritical carbon dioxide at 30 MPa and 323 K. Reproduced from Ref. 36.
Urea can be considered the amide of carbamic acid, NH2COOH, or the diamide of carbonic acid, CO(OH)2. At room temperature, urea is colorless, odorless, and tasteless. Properties are shown ia Tables 1—4. Dissolved ia water, it hydrolyzes very slowly to ammonium carbamate (1) and eventually decomposes to ammonia and carbon dioxide (qv). This reaction is the basis for the use of urea as fertilizer (qv). [Pg.297]

Property Carbon dioxide Nitrous oxide Nitrogen... [Pg.348]

Supercritical Extraction. The use of a supercritical fluid such as carbon dioxide as extractant is growing in industrial importance, particularly in the food-related industries. The advantages of supercritical fluids (qv) as extractants include favorable solubiHty and transport properties, and the abiHty to complete an extraction rapidly at moderate temperature. Whereas most of the supercritical extraction processes are soHd—Hquid extractions, some Hquid—Hquid extractions are of commercial interest also. For example, the removal of ethanol from dilute aqueous solutions using Hquid carbon dioxide... [Pg.70]

During the nineteenth century the growth of thermodynamics and the development of the kinetic theory marked the beginning of an era in which the physical sciences were given a quantitative foundation. In the laboratory, extensive researches were carried out to determine the effects of pressure and temperature on the rates of chemical reactions and to measure the physical properties of matter. Work on the critical properties of carbon dioxide and on the continuity of state by van der Waals provided the stimulus for accurate measurements on the compressibiUty of gases and Hquids at what, in 1885, was a surprisingly high pressure of 300 MPa (- 3,000 atmor 43,500 psi). This pressure was not exceeded until about 1912. [Pg.76]

BiaxiaHy orieated PPS film is transpareat and nearly colorless. It has low permeability to water vapor, carbon dioxide, and oxygen. PPS film has a low coefficient of hygroscopic expansion and a low dissipation factor, making it a candidate material for information storage devices and for thin-film capacitors. Chemical and thermal stability of PPS film derives from inherent resia properties. PPS films exposed to tolueae or chloroform for 8 weeks retaia 75% of theh original streagth. The UL temperature iadex rating of PPS film is 160°C for mechanical appHcatioas and 180°C for electrical appHcations. Table 9 summarizes the properties of PPS film. [Pg.450]

Potassium Superoxide. Potassium, mbidium, and cesium form superoxides, MO2, upon oxidation by oxygen or air. Sodium yields the peroxide, Na202 lithium yields the oxide, Li20, when oxidized under comparable conditions. Potassium superoxide [12030-88-5] KO2 liberates oxygen in contact with moisture and carbon dioxide (qv). This important property enables KO2 to serve as an oxygen source in self-contained breathing equipment. [Pg.519]

Chemical Properties The formation of salts with acids is the most characteristic reaction of amines. Since the amines are soluble in organic solvents and the salts are usually not soluble, acidic products can be conveniendy separated by the reaction with an amine, the unshared electron pair on the amine nitrogen acting as proton acceptor. Amines are good nucleophiles reactions of amines at the nitrogen atom have as a first step the formation of a bond with the unshared electron pair of nitrogen, eg, reactions with acid anhydrides, haUdes, and esters, with carbon dioxide or carbon disulfide, and with isocyanic or isothiocyanic acid derivatives. [Pg.198]

Chemica.1 Properties. Reviews of carbonyl sulfide chemistry are available (18,23,24). Carbonyl sulfide is a stable compound and can be stored under pressure ia steel cylinders as compressed gas ia equiUbrium with Hquid. At ca 600°C carbonyl sulfide disproportionates to carbon dioxide and carbon disulfide at ca 900°C it dissociates to carbon monoxide and sulfur. It bums with a blue flame to carbon dioxide and sulfur dioxide. Carbonyl sulfide reacts... [Pg.129]


See other pages where Carbon dioxide properties is mentioned: [Pg.116]    [Pg.116]    [Pg.80]    [Pg.115]    [Pg.229]    [Pg.273]    [Pg.172]    [Pg.879]    [Pg.215]    [Pg.3]    [Pg.4]    [Pg.8]    [Pg.346]    [Pg.48]    [Pg.137]    [Pg.308]    [Pg.417]    [Pg.28]    [Pg.29]    [Pg.505]    [Pg.273]    [Pg.547]    [Pg.252]    [Pg.515]    [Pg.274]    [Pg.25]    [Pg.175]    [Pg.141]    [Pg.249]    [Pg.296]    [Pg.363]    [Pg.280]    [Pg.313]    [Pg.469]    [Pg.486]    [Pg.54]    [Pg.199]    [Pg.131]   
See also in sourсe #XX -- [ Pg.359 ]




SEARCH



Beneficial Micro Reactor Properties for Carbon Dioxide Absorption

Carbon dioxide acidic properties

Carbon dioxide basic properties

Carbon dioxide electrochemical properties

Carbon dioxide liquid, physical properties

Carbon dioxide permeation properties

Carbon dioxide physical properties

Carbon dioxide physiological properties

Carbon dioxide removal property characteristics

Carbon dioxide solvent properties

Carbon dioxide standard thermodynamic properties

Carbon dioxide thermodynamic properties

Carbon dioxide thermodynamic properties at high

Carbon dioxide thermophysical properties

Carbon properties

Carbonates properties

Dioxides properties

Liquid carbon dioxide, properties

Properties of Carbon Dioxide

Solvent Properties of Carbon Dioxide

Supercritical carbon dioxide properties

The effects of elevated carbon dioxide levels on global temperature and other properties

Thermodynamic Properties of Carbon Dioxide

Transport Properties of Supercritical Carbon Dioxide

© 2024 chempedia.info