Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon dioxide feed pressure

A plant is to be designed for the production of 300,000 kg per day of urea by the reaction of ammonia and carbon dioxide at elevated temperature and pressure, using a total-recycle process in which the mixture leaving the reactor is stripped by the carbon dioxide feed (DSM process, references 1 to 4). [Pg.975]

The third process used in the production of carbon dioxide is pressure swing adsorption. The feed gas usually contains approximately 20 percent carbon dioxide, 70 percent hydrogen, and the remainder methane, carbon monoxide, nitrogen, and water. The feed gas is typically under a pressure of 125 100 psig at temperatures of 80-120°F. The carbon dioxide and water are strongly adsorbed in the adsorb beds and the residual gas stream is depressurized for further recovery. The adsorber vessel is then evacuated through vacuum blowers where the carbon dioxide, which has been adsorbed by the bed, is released at purities of essentially 99+ percent pure. [Pg.1229]

Figure 3. Experimental and predicted methane conversion rate at three different temperatures vs. carbon dioxide partial pressure (Pcf = 0.2 atm. and Pq2 = 0.01 atm. in the feed). Figure 3. Experimental and predicted methane conversion rate at three different temperatures vs. carbon dioxide partial pressure (Pcf = 0.2 atm. and Pq2 = 0.01 atm. in the feed).
Commercially, urea is produced by the direct dehydration of ammonium carbamate, NH2COONH4, at elevated temperature and pressure. Ammonium carbamate is obtained by direct reaction of ammonia and carbon dioxide. The two reactions are usually carried out simultaneously in a high pressure reactor. Recendy, urea has been used commercially as a catde-feed supplement (see Feeds and feed additives). Other important appHcations are the manufacture of resins (see Amino resins and plastics), glues, solvents, and some medicinals. Urea is classified as a nontoxic compound. [Pg.298]

Overall comparison between amine and carbonate at elevated pressures shows that the amine usually removes carbon dioxide to a lower concentration at a lower capital cost but requires more maintenance and heat. The impact of the higher heat requirement depends on the individual situation. In many appHcations, heat used for regeneration is from low temperature process gas, suitable only for boiler feed water heating or low pressure steam generation, and it may not be usefiil in the overall plant heat balance. [Pg.22]

Ethylene oxide is produced in large, multitubular reactors cooled by pressurized boiling Hquids, eg, kerosene and water. Up to 100 metric tons of catalyst may be used in a plant. Typical feed stream contains about 30% ethylene, 7—9% oxygen, 5—7% carbon dioxide the balance is diluent plus 2—5 ppmw of a halogenated moderator. Typical reactor temperatures are in the range 230—300°C. Most producers use newer versions of the Shell cesium-promoted silver on alumina catalyst developed in the mid-1970s. [Pg.202]

Temperature, pH, and feed rate are often measured and controlled. Dissolved oxygen (DO) can be controlled using aeration, agitation, pressure, and/or feed rate. Oxygen consumption and carbon dioxide formation can be measured in the outgoing air to provide insight into the metaboHc status of the microorganism. No rehable on-line measurement exists for biomass, substrate, or products. Most optimization is based on empirical methods simulation of quantitative models may provide more efficient optimization of fermentation. [Pg.290]

NOTE When calculating amine feed rates, in theory some allowance should be made for the production of carbon dioxide at high pressures. However, because of the recycling action provided by most amines and other variables, in practice this allowance calculation becomes a meaningless exercise. [Pg.496]

Solution Ideal gas behavior is a reasonable approximation for the feed stream. The inlet concentrations are 287mol/m of methane and 15mol/m of carbon dioxide. The column pressure drop is mainly due to the liquid head on the trays and will be negligible compared with 8 atm unless there are an enormous number of trays. Thus, the gas flow rate F will be approximately constant for the column as a whole. With fast reaction and a controlling gas-side resistance, c = 0. The gas-phase balance gives everything that is necessary to solve the problem ... [Pg.395]

The deprotection of carbobenzyloxy protected phenylalanine was carried out in a low-pressure test unit (V= 200 ml) equipped with a stirrer, hydrogen inlet and gas outlet. The gas outlet was attached to a Non Dispersive InfraRed (NDIR) detector to measure the carbon dioxide. During the reaction the temperature was kept at 25 °C at a constant agitation speed of 2000 rpm. In a typical reaction run, 10 mmol of Cbz protected phenylalanine and 200 mg of 5%Pd/C catalyst were stirred in a mixture of 70 ml ethanol/water (1 1). The Cbz protected phenylalanine is not water-soluble but is quite soluble in alcoholic solvents conversely, the water-soluble deprotected phenylalanine is not very soluble in alcoholic solvents. Thus, the two solvent mixture was used in order to keep the entire reaction in the solution phase. Twenty p.1 of the corresponding modifier was added to the reaction mixture, and hydrogen feed was started. The hydrogen flow into the reactor was kept constant at 500 ml/minute and the progress of the reaction was monitored by the infrared detection of C02 in the off-gas. [Pg.497]

After preformation, the substrates and carbon dioxide were supplied continuously. The membrane reactor was pressurized at the feed side up to 20 MPa with the reaction mixture. A trans-membrane pressure was created by opening a needle valve on the permeate side after which the continuous process started. [Pg.96]

Because the organic chemicals are destroyed in the GPCR reactor by reduction reactions, the main products are gases such as methane, carbon monoxide, and carbon dioxide. These gases, plus the excess feed hydrogen, must be removed at a controlled rate to maintain the set system pressure fluctuations in the system pressure are undesirable and may lead to process upsets. To accommodate the fluctuating reactor loading and gas production, the compressor must be controlled to remove gas from the system at a variable rate. This is accomplished with a variable-speed drive on the compressor. [Pg.104]


See other pages where Carbon dioxide feed pressure is mentioned: [Pg.474]    [Pg.372]    [Pg.386]    [Pg.112]    [Pg.43]    [Pg.156]    [Pg.454]    [Pg.53]    [Pg.420]    [Pg.508]    [Pg.17]    [Pg.499]    [Pg.76]    [Pg.342]    [Pg.5]    [Pg.23]    [Pg.235]    [Pg.562]    [Pg.1265]    [Pg.260]    [Pg.75]    [Pg.148]    [Pg.43]    [Pg.189]    [Pg.552]    [Pg.19]    [Pg.43]    [Pg.712]    [Pg.107]    [Pg.148]    [Pg.363]    [Pg.472]    [Pg.172]   
See also in sourсe #XX -- [ Pg.740 ]




SEARCH



Carbon dioxide pressure

Feed pressure

© 2024 chempedia.info