Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon dioxide description

In a similar vein, mean seawater temperatures can be estimated from the ratio of 0 to 0 in limestone. The latter rock is composed of calcium carbonate, laid down from shells of countless small sea creatures as they die and fall to the bottom of the ocean. The ratio of the oxygen isotopes locked up as carbon dioxide varies with the temperature of sea water. Any organisms building shells will fix the ratio in the calcium carbonate of their shells. As the limestone deposits form, the layers represent a chronological description of the mean sea temperature. To assess mean sea temperatures from thousands or millions of years ago, it is necessary only to measure accurately the ratio and use a precalibrated graph that relates temperatures to isotope ratios in sea water. [Pg.351]

First Carbonation. The process stream OH is raised to 3.0 with carbon dioxide. Juice is recycled either internally or in a separate vessel to provide seed for calcium carbonate growth. Retention time is 15—20 min at 80—85°C. OH of the juice purification process streams is more descriptive than pH for two reasons first, all of the important solution chemistry depends on reactions of the hydroxyl ion rather than of the hydrogen ion and second, the nature of the C0 2 U20-Ca " equiUbria results in a OH which is independent of the temperature of the solution. AH of the temperature effects on the dissociation constant of water are reflected by the pH. [Pg.26]

A brief and simplified description of how electricity price may be determined is given in Appendix B, giving some comparisons between different basic plants. We also describe there how the economics of a new plant may be affected by the imposition of an extra carbon tax associated with the amount of carbon dioxide produced. [Pg.131]

The coupling of supercritical fluid extraction (SEE) with gas chromatography (SEE-GC) provides an excellent example of the application of multidimensional chromatography principles to a sample preparation method. In SEE, the analytical matrix is packed into an extraction vessel and a supercritical fluid, usually carbon dioxide, is passed through it. The analyte matrix may be viewed as the stationary phase, while the supercritical fluid can be viewed as the mobile phase. In order to obtain an effective extraction, the solubility of the analyte in the supercritical fluid mobile phase must be considered, along with its affinity to the matrix stationary phase. The effluent from the extraction is then collected and transferred to a gas chromatograph. In his comprehensive text, Taylor provides an excellent description of the principles and applications of SEE (44), while Pawliszyn presents a description of the supercritical fluid as the mobile phase in his development of a kinetic model for the extraction process (45). [Pg.427]

Sometimes we need to construct a balanced chemical equation from the description of a reaction. For example, methane, CH4, is the principal ingredient of natural gas (Fig. H.3). It burns in oxygen to form carbon dioxide and water, both formed initially as gases. To write the balanced equation for the reaction, we first write the skeletal equation ... [Pg.87]

Diffusion coefficients can be estimated with the aid of the mathematical description of the diffusion of carbon dioxide from the paint film (Scheme II). Film thickness, saturation concentration and carbon dioxide equilibrium concentration are known. The emission curves of carbon dioxide calculated by the model have been fitted with the actual emission curves in Figure 7. In this case carbon dioxide is not formed chemically. [Pg.237]

Typically, acid soils are titrated with a sodium or calcium hydroxide [NaOH or Ca(OH)2] solution and basic soils with hydrochloric acid (HC1), and pH changes are most commonly followed using a pH meter. Carbonates in basic soils release C02 during treatment with HC1, thus making the titration more difficult. For this reason, carbonates are often determined by other methods. It is important to keep in mind that basic solutions react with carbon dioxide in air and form insoluble carbonates. This means that either the basic titrant is standardized each day before use or the solution is protected from exposure to carbon dioxide in air. Specific descriptions of titrant preparation, primary standards, and the use of indicators and pH meters in titrations can be found in Harris [1] and in Skoog et al. [2],... [Pg.212]

Wolfe has presented an excellent description of the systematic application of stable and radioactive isotope tracers in determining the kinetics of substrate oxidation, carbon dioxide formation (including C02 breath tests), glucose oxidation, and fat oxidation in normal and diseased states. Quantification of the rate and extent of substrate oxidation can be achieved by using a specific or C-substrate which upon oxidation releases radioactive carbon dioxide. [Pg.662]

A detailed description of salt mining will be postponed until the next chapter, but it is important to note that soda ash is made from both limestone and salt, the two major raw materials. As outlined in Fig. 5.2, the brine (salt solution) is mixed with ammonia in a large ammonia absorber. A lime kiln, using technology similar to that discussed earlier, serves as the source of carbon dioxide, which is mixed with the salt and ammonia in carbonation towers to form ammonium bicarbonate and finally sodium bicarbonate and ammonium chloride. Filtration separates the less soluble sodium bicarbonate from the ammonium chloride in solution. [Pg.70]

The analytes typically determined by using this type of sensor are those usually addressed by gas-diffiision systems, viz. ammonia (or ammonium ion), carbon dioxide (or carbonates) and oxygen. The detection system used is most frequently photometric, fluorimetric or potentiometric, and can be integrated with or connected to the sensing microzone. The description below is based on the two choices shown in Fig. 5.4. [Pg.264]

Description of extraction of grape seed oil by means of liquid and supercritical carbon dioxide as solvent (Gomez et al., 1996). [Pg.149]

Solubilities of carbon dioxide were determined as in the previous investigations (3,4,5, 7). Full descriptions of the apparatus and the mode of operation... [Pg.377]

The addition of a gas to a reaction mixture (commonly the hydrogen halides, fluorine, chlorine, phosgene, boron trifluoride, carbon dioxide, ammonia, gaseous unsaturated hydrocarbons, ethylene oxide) requires the provision of safety precautions which may not be immediately apparent. Some of these gases may be generated in situ (e.g. diborane in hydroboration reactions), some may be commercially available in cylinders, and some may be generated by chemical or other means (e.g. carbon dioxide, ozone). An individual description of the convenient sources of these gases will be found under Section 4.2. [Pg.83]

In Section I we introduce the gas-polymer-matrix model for gas sorption and transport in polymers (10, LI), which is based on the experimental evidence that even permanent gases interact with the polymeric chains, resulting in changes in the solubility and diffusion coefficients. Just as the dynamic properties of the matrix depend on gas-polymer-matrix composition, the matrix model predicts that the solubility and diffusion coefficients depend on gas concentration in the polymer. We present a mathematical description of the sorption and transport of gases in polymers (10, 11) that is based on the thermodynamic analysis of solubility (12), on the statistical mechanical model of diffusion (13), and on the theory of corresponding states (14). In Section II we use the matrix model to analyze the sorption, permeability and time-lag data for carbon dioxide in polycarbonate, and compare this analysis with the dual-mode model analysis (15). In Section III we comment on the physical implication of the gas-polymer-matrix model. [Pg.117]


See other pages where Carbon dioxide description is mentioned: [Pg.89]    [Pg.366]    [Pg.35]    [Pg.158]    [Pg.286]    [Pg.7]    [Pg.49]    [Pg.260]    [Pg.468]    [Pg.58]    [Pg.252]    [Pg.50]    [Pg.208]    [Pg.195]    [Pg.145]    [Pg.752]    [Pg.472]    [Pg.62]    [Pg.159]    [Pg.179]    [Pg.186]    [Pg.41]    [Pg.4]    [Pg.89]    [Pg.366]    [Pg.13]    [Pg.35]    [Pg.16]    [Pg.155]    [Pg.4]   
See also in sourсe #XX -- [ Pg.258 ]

See also in sourсe #XX -- [ Pg.298 ]

See also in sourсe #XX -- [ Pg.285 , Pg.287 ]




SEARCH



Carbon dioxide model description

© 2024 chempedia.info