Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon catalytic performance

The book focuses on three main themes catalyst preparation and activation, reaction mechanism, and process-related topics. A panel of expert contributors discusses synthesis of catalysts, carbon nanomaterials, nitric oxide calcinations, the influence of carbon, catalytic performance issues, chelating agents, and Cu and alkali promoters. They also explore Co/silica catalysts, thermodynamic control, the Two Alpha model, co-feeding experiments, internal diffusion limitations. Fe-LTFT selectivity, and the effect of co-fed water. Lastly, the book examines cross-flow filtration, kinetic studies, reduction of CO emissions, syncrude, and low-temperature water-gas shift. [Pg.407]

Beyond the catalytic ignition point there is a rapid increase in catalytic performance with small increases in temperature. A measure of catalyst performance has been the temperature at which 50% conversion of reactant is achieved. For carbon monoxide this is often referred to as CO. The catalyst light-off property is important for exhaust emission control because the catalyst light-off must occur rehably every time the engine is started, even after extreme in-use engine operating conditions. [Pg.488]

In this work, catalysts containing iron supported on activated carbon were prepared and investigated for their catalytic performance in the direct production of phenol fiom benzene with hydrogen peroxide and the effect of Sn addition to iron loaded on activated carbon catalyst were also studied. [Pg.278]

The preparation of iron impregnated activated carbon as catalysts and the catalytic performance of these catalysts were studied in benzene hydroxylation with hydrogen peroxide as oxidant. 5.0Fe/AC catalyst containing 5.0 wt% iron on activated carbon yielded about 16% phenol. The addition of Sn on 5.0Fe/AC catalyst led to the enhancement of selectivity towards phenol. [Pg.280]

Mesoporous carbon materials were prepared using ordered silica templates. The Pt catalysts supported on mesoporous carbons were prepared by an impregnation method for use in the methanol electro-oxidation. The Pt/MC catalysts retained highly dispersed Pt particles on the supports. In the methanol electro-oxidation, the Pt/MC catalysts exhibited better catalytic performance than the Pt/Vulcan catalyst. The enhanced catalytic performance of Pt/MC catalysts resulted from large active metal surface areas. The catalytic performance was in the following order Pt/CMK-1 > Pt/CMK-3 > Pt/Vulcan. It was also revealed that CMK-1 with 3-dimensional pore structure was more favorable for metal dispersion than CMK-3 with 2-dimensional pore arrangement. It is eoncluded that the metal dispersion was a critical factor determining the catalytic performance in the methanol electro-oxidation. [Pg.612]

It is found that the CNF-HT has not catalytic activity for ODP. After oxidation, all the three samples show hi ly catalytic performances, which are shown in Fig.3. CNF-HL has the longest induction period among the three samples, and it has relatively low activity and propene selectivity at the beginning of the test. During the induction periods, the carbon balance exceeds 105% and then fall into 100 5%, which implies the CNF structure is stable and the surface chemistry of CNF reaches a dynamic equilibrium eventually. These results indicate that the catalytic activity of ODP can be attributed to the existence of surface oxygen complexes which are produced by oxidation. The highest propene yield(lS.96%) is achieve on CNF-HL at a 52.97% propane conversion. [Pg.747]

Table 2 Catalytic performance of the debenzylation reaction on carbon supported palladium catalyst. Table 2 Catalytic performance of the debenzylation reaction on carbon supported palladium catalyst.
Figures 1 shows the catalytic performance of the Fe-BEA catalysts in the temperature range of 250-550 °C. It is clear from the figure that propylene yield depends on particle size of the parent BEA zeolite. Effect of the N20 concentration has been analyzed under reaction regimes RS-1 and RS-2. Increase in N20 concentration resulted in the same propene yields but increased the N20 conversion and decreased the selectivity toward propylene. At higher temperature has been obtained increases in the formation of the molecular oxygen which further accelerates production of the undesired carbon oxides. Thus, at lower feed concentration of N20, i.e. at 1 1 feed ratio of reactants (RS-1), formation of carbon oxides is suppressed and the selectivity of ODHP reaction is... Figures 1 shows the catalytic performance of the Fe-BEA catalysts in the temperature range of 250-550 °C. It is clear from the figure that propylene yield depends on particle size of the parent BEA zeolite. Effect of the N20 concentration has been analyzed under reaction regimes RS-1 and RS-2. Increase in N20 concentration resulted in the same propene yields but increased the N20 conversion and decreased the selectivity toward propylene. At higher temperature has been obtained increases in the formation of the molecular oxygen which further accelerates production of the undesired carbon oxides. Thus, at lower feed concentration of N20, i.e. at 1 1 feed ratio of reactants (RS-1), formation of carbon oxides is suppressed and the selectivity of ODHP reaction is...
In the direct ammoxidation of propane over Fe-zeolite catalysts the product mixture consisted of propene, acrylonitrile (AN), acetonitrile (AcN), and carbon oxides. Traces of methane, ethane, ethene and HCN were also detected with selectivity not exceeding 3%. The catalytic performances of the investigated catalysts are summarized in the Table 1. It must be noted that catalytic activity of MTW and silicalite matrix without iron (Fe concentration is lower than 50 ppm) was negligible. The propane conversion was below 1.5 % and no nitriles were detected. It is clearly seen from the Table 1 that the activity and selectivity of catalysts are influenced not only by the content of iron, but also by the zeolite framework structure. Typically, the Fe-MTW zeolites exhibit higher selectivity to propene (even at higher propane conversion than in the case of Fe-silicalite) and substantially lower selectivity to nitriles (both acrylonitrile and acetonitrile). The Fe-silicalite catalyst exhibits acrylonitrile selectivity 31.5 %, whereas the Fe-MTW catalysts with Fe concentration 1400 and 18900 ppm exhibit, at similar propane conversion, the AN selectivity 19.2 and 15.2 %, respectively. On the other hand, Fe-MTW zeolites exhibit higher AN/AcN ratio in comparison with Fe-silicalite catalyst (see Table 1). Fe-MTW-11500 catalyst reveals rather rare behavior. The concentration of Fe ions in the sample is comparable to Fe-sil-12900 catalyst, as well as... [Pg.399]

Concerning the Fischer-Tropsch synthesis, carbon nanomaterials have already been successfully employed as catalyst support media on a laboratory scale. The main attention in literature has been paid so far to subjects such as the comparison of functionalization techniques,9-11 the influence of promoters on the catalytic performance,1 12 and the investigations of metal particle size effects7,8 as well as of metal-support interactions.14,15 However, research was focused on one nanomaterial type only in each of these studies. Yu et al.16 compared the performance of two different kinds of nanofibers (herringbones and platelets) in the Fischer-Tropsch synthesis. A direct comparison between nanotubes and nanofibers as catalyst support media has not yet been an issue of discussion in Fischer-Tropsch investigations. In addition, a comparison with commercially used FT catalysts has up to now not been published. [Pg.18]

In summary, the basicity and the strong NiO-MgO interactions in binary NiO/MgO solid solution catalysts, which inhibit carbon deposition and catalyst sintering, result in an excellent catalytic performance for C02 reforming. The characteristics of MgO play an important role in the performance of a highly efficient NiO/MgO solid-solution catalyst. Moreover, the NiO/MgO catalyst performance is sensitive to the NiO content a too-small amount of NiO in the solid solution leads to a low activity, and a too-high amount of NiO to a low stability. CoO/MgO solid solutions have catalytic performances similar to those of NiO/MgO solid solutions, but require higher reaction temperatures. So far, no experimental information is available regarding the use of a FeO/MgO solid solution for CH4 conversion to synthesis gas. [Pg.359]

The main difference between titania nanotube and the ID nanostructures discussed before is the presence of an hollow structure, but which has significant consequences for their use as catalytic materials (i) in the hollow fiber nanoconfinement effects are possible, which can be relevant for enhancing the catalytic performance (ii) due to the curvature, similarly to multi-wall carbon nanotubes, the inner surface in the nanotube is different from that present on the external surface this effect could be also used to develop new catalysts and (iii) different active components can be localized on the external and internal walls to realize spatially separated (on a nanoscale level) multifunctional catalysts. [Pg.376]

The inner cavity of carbon nanotubes stimulated some research on utilization of the so-called confinement effect [33]. It was observed that catalyst particles selectively deposited inside or outside of the CNT host (Fig. 15.7) in some cases provide different catalytic properties. Explanations range from an electronic origin due to the partial sp3 character of basal plane carbon atoms, which results in a higher n-electron density on the outer than on the inner CNT surface (Fig. 15.4(b)) [34], to an increased pressure of the reactants in nanosized pores [35]. Exemplarily for inside CNT deposited catalyst particles, Bao et al. observed a superior performance of Rh/Mn/Li/Fe nanoparticles in the ethanol production from syngas [36], whereas the opposite trend was found for an Ru catalyst in ammonia decomposition [37]. Considering the substantial volume shrinkage and expansion, respectively, in these two reactions, such results may indeed indicate an increased pressure as the key factor for catalytic performance. However, the activity of a Ru catalyst deposited on the outside wall of CNTs is also more active in the synthesis of ammonia, which in this case is explained by electronic properties [34]. [Pg.400]

The utilization of large surface areas and, to a certain extent, controllable surface properties make carbon materials an ideal support for finely dispersed catalyst nanoparticles, as discussed in Section 15.2. The special features of nanocarbons for this purpose will be highlighted in the following section. Starting with the controlled synthesis of a variety of nanocarbon-inorganic hybrids, some examples will be discussed, where the superior catalytic performance arises from the unique properties of the nanostructured support. [Pg.412]

The most active catalysts for NH3 decomposition are based on Ru, however, cheaper Fe, Co, Ni and alloy systems are also intensely investigated [148]. The impact of the support material is remarkable. In a study by Au et al., Ru/CNTs performed better than all oxide-supported systems, whereas activated carbon resulted in one of the lowest NH3 conversions (Tab. 15.6) [147]. The dispersion of the active component as well as basicity [147] and conductivity [149] of the support are discussed as the relevant factors for high catalytic efficiency. However, the difference between CNT and activated carbon support is still remarkable. Thus it is not surprising that even the residual catalyst material on commercial MWCNTs, which is basically based on Fe and Co, results is a high catalytic performance in NH3 decomposition [150]. [Pg.421]

However, the performance of a fuel cell with these carbon aerogels as DLs was around a factor of six lower than the performance of commercial electrodes. This was due mainly to the fact that the authors did not use additional electrolyte when depositing the catalytically active layer, thus causing reduced ionic conductivity between the catalyst (Pt particles) and the membrane. In addition, the MEAs with carbon aerogels performed poorly at high current densities because the Pt particles used were 10 times larger than the ones normally used [20]. [Pg.207]

In particular the recent investigation as part of the project Smart Sol-vents/Smart ligands of the SLPC with PEG and ionic Hquids ( SILP ) as the catalyst carrier opened up new possibihties for the immobihzation of homogeneous catalysts. By increasing the stabihty of the catalytic performance, this concept may have the potential to be kept in mind for industrial catalysis in combination with environmentally benign supercritical or compressed carbon dioxide. In addition, this methodology is able to provide access to some chemical applications and processes because of the easy and facile preparation of the coated materials. [Pg.11]

Figure 4 shows the catalytic performance of sample oxlsp the conversion of n-pentane, and the selectivity to the main products, MA, PA and carbon oxides, are reported as functions of the reaction temperature. The selectivity to MA increased on increasing the reaction temperature, and correspondingly the selectivity to PA decreased. The overall selectivity to PA and MA was approximately constant up to 400°C, but then decreased, due to the preferred formation of carbon oxides. [Pg.114]


See other pages where Carbon catalytic performance is mentioned: [Pg.121]    [Pg.192]    [Pg.453]    [Pg.270]    [Pg.391]    [Pg.112]    [Pg.495]    [Pg.442]    [Pg.444]    [Pg.23]    [Pg.84]    [Pg.151]    [Pg.353]    [Pg.80]    [Pg.503]    [Pg.239]    [Pg.404]    [Pg.410]    [Pg.413]    [Pg.417]    [Pg.418]    [Pg.419]    [Pg.42]    [Pg.94]    [Pg.197]    [Pg.250]    [Pg.71]    [Pg.201]    [Pg.206]    [Pg.201]    [Pg.604]    [Pg.188]    [Pg.617]   
See also in sourсe #XX -- [ Pg.72 , Pg.76 ]




SEARCH



Carbon performance

Carbonic catalytic

Carbonization catalytic

© 2024 chempedia.info