Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface complex oxygenation

Theories of the oxidation of tantalum in the presence of suboxide have been developed by Stringer. By means of single-crystal studies he has been able to show that a rate anisotropy stems from the orientation of the suboxide which is precipitated in the form of thin plates. Their influence on the oxidation rate is least when they lie parallel to the metal interface, since the stresses set up by their oxidation to the pentoxide are most easily accommodated. By contrast, when the plates are at 45° to the surface, complex stresses are established which create characteristic chevron markings and cracks in the oxide. The cracks in this case follow lines of pores generated by oxidation of the plates. This behaviour is also found with niobium, but surprisingly, these pores are not formed when Ta-Nb alloys are oxidised, and the rate anisotropy disappears. However, the rate remains linear it seems that this is another case in which molecular oxygen travels by sub-microscopic routes. [Pg.285]

The surface of carbonaceous materials contains numerous chemical complexes that are formed during the manufacturing step by oxidation or introduced during post-treatment. The surface complexes are typically chemisorbed oxygen groups such as carbonyl, carboxyl, lactone, quinone, and phenol (see Fig. 3). [Pg.234]

An XPS Investigation of iron Fischer-Tropsch catalysts before and after exposure to realistic reaction conditions is reported. The iron catalyst used in the study was a moderate surface area (15M /g) iron powder with and without 0.6 wt.% K2CO3. Upon reduction, surface oxide on the fresh catalyst is converted to metallic iron and the K2CO3 promoter decomposes into a potassium-oxygen surface complex. Under reaction conditions, the iron catalyst is converted to iron carbide and surface carbon deposition occurs. The nature of this carbon deposit is highly dependent on reaction conditions and the presence of surface alkali. [Pg.124]

Integrating equations (2.37) and (2.39) under assumption that in case of direct reaction of surface complex formation (Me C ) the reaction of interaction of oxygen with surface metal atoms is the limiting stage rather than formation of physadsorbed oxygen (i.e. assuming that [02( )J = const and it does not change in time) we arrive to the respective expression for kinetics of direct and inverse reactions ... [Pg.130]

It should be noted that dissociation of surface complexes of oxygen in polar solvents on semireduced ZnO films is presumably justified from the thermodynamic point of view as oxygen adsorption heat on ZnO and electron work function are [58] 1 and approximately 5 eV respectively while the energies of affinity of oxygen molecules to electron, to solvation of superoxide ion and surface unit charge zinc dope ions are 0.87, 3.5, and higher than 3 eV, respectively [43]. [Pg.210]

Metallo-organic compounds possess high reactivity to water, oxygen and nearly all organic solvents, except hydrocarbons and ethers. Chemical properties of the suggested surface complexes of the type M )f in presence of various solvents are unknown. However,... [Pg.265]

Especially for the low temperature water gas shift reaction the mechanistic scheme, proposed here, seems to correspond to the three different adsorbed oxygen species, proposed by Kobaya-shi (13) for the ethylene oxidation on silver, whereas the importance of some surface complexes of CO - 1 0 type has been revealed (14) by analysing steady state data. [Pg.298]

Surface complex formation of cations by hydrous oxides involves the coordination of the. metal ions with the oxygen donor atoms and the release of protons from the surface, e.g.,... [Pg.22]

If isomorphic substitution of Si(IV) by AI(III) occurs in the tetrahedral sheet, the resulting negative charge can distribute itself over the three oxygen atoms of the tetrahedron (in which the Si has been substituted) the charge is localized and relatively strong inner-sphere surface complexes (Fig. 3.10a) can be formed. [Pg.62]

We have argued that (inner-sphere) surface complex formation of a metal ion to the oxygen donor atoms of the functional groups of a hydrous oxide is in principle similar to complex formation in homogeneous solution, and we have used the same type of equilibrium constants. How far can we apply similar concepts in kinetics ... [Pg.98]

The dissolution of quartz is accelerated by bi- or multidentate ligands such as oxalate or citrate at neutral pH-values. The effect is due to surface complex formation of these ligands to the Si02-surface (Bennett, 1991). In the higher pH-range the dissolution of quartz is increased by alkali cations (Bennett, 1991). Most likely these cations can form inner-spheric complexes with the =SiO groups. Such a complex formation is accompanied by a deprotonation of the oxygen atoms in the surface lattice (see Examples 2.4 and 5.1). This increase in C H leads to an increase in dissolution rate (see Fig. 5.9c). [Pg.176]

Schematic representation of the various reaction modes for the dissolution of Fe(III)(hydr)oxides a) by protons b) by bidentate complex formers that form surface chelates. The resulting solute Fe(III) complexes may subsequently become reduced, e.g., by HS c) by reductants (ligands with oxygen donor atoms) such as ascorbate that can form surface complexes and transfer electrons inner-spheri-cally d) catalytic dissolution of Fe(III)(hydr)oxides by Fe(II) in the presence of a complex former e) light-induced dissolution of Fe(III)(hydr)oxides in the presence of an electron donor such as oxalate. In all of the above examples, surface coordination controls the dissolution process. (Adapted from Sulzberger et al., 1989, and from Hering and Stumm, 1990.)... Schematic representation of the various reaction modes for the dissolution of Fe(III)(hydr)oxides a) by protons b) by bidentate complex formers that form surface chelates. The resulting solute Fe(III) complexes may subsequently become reduced, e.g., by HS c) by reductants (ligands with oxygen donor atoms) such as ascorbate that can form surface complexes and transfer electrons inner-spheri-cally d) catalytic dissolution of Fe(III)(hydr)oxides by Fe(II) in the presence of a complex former e) light-induced dissolution of Fe(III)(hydr)oxides in the presence of an electron donor such as oxalate. In all of the above examples, surface coordination controls the dissolution process. (Adapted from Sulzberger et al., 1989, and from Hering and Stumm, 1990.)...
Reactivity of Fe(III)(hydr)oxide as measured by the reductive dissolution with ascorbate. "Fe(OH)3" is prepared from Fe(II) (10 4 M) and HCO3 (3 10 4 M) by oxygenation (po2 = 0.2 atm) in presence of a buffer imidazd pH = 6.7 (Fig. a) and in presence of TRIS and imidazol pH = 7.7 (Fig. b). After the formation of Fe(III)(hydr)oxide the solution is deaerated by N2, and ascorbate (4.8 10 2 M) is added. The reactivity of "Fe(OH)3 differs markedly depending on its preparation. In presence of imidazole (Fig. a) the hydrous oxide has properties similar to lepidocrocite (i.e., upon filtration of the suspension the solid phase is identified as lepidocrocite). In presence of TRIS, outer-sphere surface complexes with the native mononuclear Fe(OH)3 are probably formed which retard the polymerization to polynuclear "Fe(OH)3" (von Gunten and Schneider, 1991). [Pg.322]

Pyrite Oxidation. The oxidation of Fe(ll) minerals by Fe3+ is also of importance in the oxidation of pyrite by 02. This process is mediated by the Fe(II)-Fe(III)system. Pyrite is oxidized by Fe3+ (which forms a surface complex with the pyrite (cf. formula VI in Fig. 9.1) (Luther, 1990). The rate determining step at the relatively low pH values encountered under conditions of pyrite dissolution is the oxygenation of Fe(II) to Fe(III) usually catalyzed by autotrophic bacteria (Singer and Stumm, 1970 Stumm-Zollinger, 1972). Thus, the overall rate of pyrite dissolution is insensitive to the mineral surface area concentration. Microbially catalyzed oxidation of Fe(II) to Fe(III) by oxygen could also be of some significance for oxidative silicate dissolution in certain acid environments. [Pg.328]


See other pages where Surface complex oxygenation is mentioned: [Pg.383]    [Pg.2430]    [Pg.822]    [Pg.823]    [Pg.825]    [Pg.39]    [Pg.48]    [Pg.76]    [Pg.392]    [Pg.169]    [Pg.167]    [Pg.204]    [Pg.439]    [Pg.4]    [Pg.19]    [Pg.90]    [Pg.91]    [Pg.210]    [Pg.215]    [Pg.395]    [Pg.167]    [Pg.529]    [Pg.61]    [Pg.70]    [Pg.85]    [Pg.91]    [Pg.710]    [Pg.165]    [Pg.309]    [Pg.311]    [Pg.357]    [Pg.360]    [Pg.432]    [Pg.491]    [Pg.404]    [Pg.361]    [Pg.217]   
See also in sourсe #XX -- [ Pg.328 ]




SEARCH



Oxygen complexes

Oxygen surface

Surface complex

Surface complexation

Surface oxygen complexes

© 2024 chempedia.info