Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbene complexes alkene metathesis

The substituent effects on the alkene were investigated in the reaction of enyne 12 and chromium carbene complex 2c [8]. In the reaction of enyne -12a having a phenyl group on the alkene with Fischer chromium carbene complex 2c, metathesis product 13a was obtained as a main product along with cyclopropane 14 and cyclobutanone 15 (Eq.4). The reaction of Z-12a with 2c gave only... [Pg.144]

Schrock and Fischer type carbyne tungsten or molybdenum complexes are very interesting catalysts for alkene metathesis or alkyne polymerisation reactions. Within the first reaction steps they form carbene complexes and on these carbene complexes further metathesis or polymerisation occur. [Pg.66]

Some general reviews relating to the chemistry of Ru/Os-r hydrocarbon complexes appear in the literature the reactivity of Ru-H bonds with alkenes and alkynes/ aspects of ruthenium/osmium vinylidene/allenylidene/cumul-enylidene complexes,equilibria of M-R/M=CR2/M=CR complexes, the organometallic chemistry of metal porphyrin complexes, and the reactions of [Os(P Pr3)2(CO)HGl], ruthenium pyrazoly I borate complexes,and metallabenzynes. Other reviews relate more to applications of some of the complexes outlined in this chapter. See, for example, metal vinylidenes in catalysis,the development of Grubbs-type alkene metathesis catalysts, applications of ruthenium/osmium carbene complexes in metathesis polymerization, and the role of Ru /V-hetero-cyclic carbene complexes in metathesis polymerization. ... [Pg.386]

O Neill and Rooney 90) found that the Mo03-CoO-A1208 catalyst converts diazomethane into nitrogen and ethene under conditions where propene undergoes metathesis. However, because many catalysts are active for this conversion 91), their results cannot be considered as supporting the hypothesis that the metathesis reaction of alkenes proceeds via carbene complexes. [Pg.151]

Because in metathesis reactions with most catalyst systems a selectivity of nearly 100% is found, a carbene mechanism seems less likely. Banks and Bailey ( ) reported the formation of small quantities of C3-C6-alkenes, cyclopropane, and methylcyclopropane when ethene was passed over Mo(CO)6-A1203, which suggests reactions involving carbene complexes. However, similar results have not been reported elsewhere most probably the products found by Banks and Bailey were formed by side reactions, typical for their particular catalyst system. [Pg.151]

It is clear that a detailed mechanism for the metathesis reaction of alkenes cannot yet be given with certainty. In view of the fact that, for similar reactions which are formally cyclobutane-dialkene transformations, a nonconcerted reaction pathway has been demonstrated, a concerted fusion of two alkenes to form a cyclobutane complex and its decomposition in the same way with a change in the symmetry plane is less probable. On the basis of the information on the two other mechanisms to date, the mechanism involving a metallocyclic intermediate is more plausible than a mechanism involving carbene complexes. [Pg.151]

The preferred kinetic model for the metathesis of acyclic alkenes is a Langmuir type model, with a rate-determining reaction between two adsorbed (complexed) molecules. For the metathesis of cycloalkenes, the kinetic model of Calderon as depicted in Fig. 4 agrees well with the experimental results. A scheme involving carbene complexes (Fig. 5) is less likely, which is consistent with the conclusion drawn from mechanistic considerations (Section III). However, Calderon s model might also fit the experimental data in the case of acyclic alkenes. If, for instance, the concentration of the dialkene complex is independent of the concentration of free alkene, the reaction will be first order with respect to the alkene. This has in fact been observed (Section IV.C.2) but, within certain limits, a first-order relationship can also be obtained from many hyperbolic models. Moreover, it seems unreasonable to assume that one single kinetic model could represent the experimental results of all systems under consideration. Clearly, further experimental work is needed to arrive at more definite conclusions. Especially, it is necessary to investigate whether conclusions derived for a particular system are valid for all catalyst systems. [Pg.168]

These carbene (or alkylidene) complexes are used for various transformations. Known reactions of these complexes are (a) alkene metathesis, (b) alkene cyclopropanation, (c) carbonyl alkenation, (d) insertion into C-H, N-H and O-H bonds, (e) ylide formation and (f) dimerization. The reactivity of these complexes can be tuned by varying the metal, oxidation state or ligands. Nowadays carbene complexes with cumulated double bonds have also been synthesized and investigated [45-49] as well as carbene cluster compounds, which will not be discussed here [50]. [Pg.6]

The possibility of being involved in olefin metathesis is one of the most important properties of Fischer carbene complexes. [2+2] Cycloaddition between the electron-rich alkene 11 and the carbene complex 12 leads to the intermediate metallacyclobutane 13, which undergoes [2+2] cycloreversion to give a new carbene complex 15 and a new alkene 14 [19]. The (methoxy)phenylcar-benetungsten complex is less reactive in this mode than the corresponding chromium and molybdenum analogs (Scheme 3). [Pg.24]

Non-heteroatom-stabilised Fischer carbene complexes also react with alkenes to give mixtures of olefin metathesis products and cyclopropane derivatives which are frequently the minor reaction products [19]. Furthermore, non-heteroatom-stabilised vinylcarbene complexes, generated in situ by reaction of an alkoxy- or aminocarbene complex with an alkyne, are able to react with different types of alkenes in an intramolecular or intermolecular process to produce bicyclic compounds containing a cyclopropane ring [20]. [Pg.65]

Keywords Metathesis Alkenes Catalysis Ruthenium Metal carbene complexes... [Pg.224]

The resulting carbene complex 41b bears a hetero substituent and shows activity in the ring-opening/cross metathesis of strained bicyclic alkenes and... [Pg.233]

Enyne metathesis is unique and interesting in synthetic organic chemistry. Since it is difficult to control intermolecular enyne metathesis, this reaction is used as intramolecular enyne metathesis. There are two types of enyne metathesis one is caused by [2+2] cycloaddition of a multiple bond and transition metal carbene complex, and the other is an oxidative cyclization reaction caused by low-valent transition metals. In these cases, the alkyli-dene part migrates from alkene to alkyne carbon. Thus, this reaction is called an alkylidene migration reaction or a skeletal reorganization reaction. Many cyclized products having a diene moiety were obtained using intramolecular enyne metathesis. Very recently, intermolecular enyne metathesis has been developed between alkyne and ethylene as novel diene synthesis. [Pg.142]

Following the report by Katz, Hoye [7] reported that enyne 9 having a dimethyl group on the alkene gave metathesis products 10 and 11 using a stoichiometric amount of a Fischer carbene complex (Eq. 3, Table 1). [Pg.144]

Intermolecular enyne metathesis has recently been developed using ethylene gas as the alkene [20]. The plan is shown in Scheme 10. In this reaction,benzyli-dene carbene complex 52b, which is commercially available [16b], reacts with ethylene to give ruthenacyclobutane 73. This then converts into methylene ruthenium complex 57, which is the real catalyst in this reaction. It reacts with the alkyne intermolecularly to produce ruthenacyclobutene 74, which is converted into vinyl ruthenium carbene complex 75. It must react with ethylene, not with the alkyne, to produce ruthenacyclobutane 76 via [2+2] cycloaddition. Then it gives diene 72, and methylene ruthenium complex 57 would be regenerated. If the methylene ruthenium complex 57 reacts with ethylene, ruthenacyclobutane 77 would be formed. However, this process is a so-called non-productive process, and it returns to ethylene and 57. The reaction was carried out in CH2Cl2 un-... [Pg.156]

This review focuses on the cross-metathesis reactions of functionalised alkenes catalysed by well-defined metal carbene complexes. The cross- and self-metath-esis reactions of unfunctionalised alkenes are of limited use to the synthetic organic chemist and therefore outside the scope of this review. Similarly, ill-defined multicomponent catalyst systems, which generally have very limited functional group tolerance, will only be included as a brief introduction to the subject area. [Pg.165]

Initial reports of cross-metathesis reactions using well-defined catalysts were limited to simple isolated examples the metathesis of ethyl or methyl oleate with dec-5-ene catalysed by tungsten alkylidenes [13,14] and the cross-metathesis of unsaturated ethers catalysed by a chromium carbene complex [15]. With the discovery of the well-defined molybdenum and ruthenium alkylidene catalysts 3 and 4,by Schrock [16] and Grubbs [17],respectively, the development of alkene metathesis as a tool for organic synthesis began in earnest. [Pg.167]

When alkenes are allowed to react with certain catalysts (mostly tungsten and molybdenum complexes), they are converted to other alkenes in a reaction in which the substituents on the alkenes formally interchange. This interconversion is called metathesis 126>. For some time its mechanism was believed to involve a cyclobutane intermediate (Eq. (16)). Although this has since been proven wrong and found that the catalytic metathesis rather proceeds via metal carbene complexes and metallo-cyclobutanes as discrete intermediates, reactions of olefins forming cyclobutanes,... [Pg.137]

Although the transformation of a primary alkyne into a vinylidene complex, 2, in presence of a number of transition metal systems is well reported [2, 3], only rare examples are known for the transformation of an alkene into a carbene complex [4, 5]. Given the increased role played by vinylidene and carbene complexes as key partners in metathesis reactions and related catalytic processes [6, 7], opening up new efficient and easy synthetic routes to such complexes is an important challenge. [Pg.138]

Carbenes are both reactive intermediates and ligands in catalysis. They occur as intermediates in the alkene metathesis reaction (Chapter 16) and the cyclopropanation of alkenes. As intermediates they carry hydrogen and carbon substituents and belong therefore to the class of Schrock carbenes. As ligands they contain nitrogen substituents and are clearly Fischer carbenes. They have received a great deal of attention in the last decade as ligands in catalytic metal complexes [58], but the structural motive was already explored in the early seventies [59],... [Pg.24]

There are no mechanistic details known from intermediates of copper, like we have seen in the studies on metathesis, where both metal alkylidene complexes and metallacyclobutanes that are active catalysts have been isolated and characterised. The copper catalyst must fulfil two roles, first it must decompose the diazo compound in the carbene and dinitrogen and secondly it must transfer the carbene fragment to an alkene. Copper carbene species, if involved, must be rather unstable, but yet in view of the enantioselective effect of the ligands on copper, clearly the carbene fragment must be coordinated to copper. It is generally believed that the copper carbene complex is rather a copper carbenoid complex, as the highly reactive species has reactivities very similar to free carbenes. It has not the character of a metal-alkylidene complex that we have encountered on the left-hand-side of the periodic table in metathesis (Chapter 16). Carbene-copper species have been observed in situ (in a neutral copper species containing an iminophosphanamide as the anion), but they are still very rare [9],... [Pg.363]

Two of the most characteristic reactions of carbene complexes are olefin metathesis and olefin cyclopropanation. Olefin metathesis is a reaction in which the C-C double bond of an alkene is cleaved, and one of the resulting alkylidene fragments combines with the metal-bound carbene to form a new alkene. The second alkylidene fragment forms a new carbene eomplex with the metal. Olefin cyclopropanation is a reaction in which a a bond is formed between the metal-bound alkylidene and each of the two carbon atoms of the alkene, to yield a cyclopropane. [Pg.5]

Several other observations suggest that nucleophilic carbene complexes, similarly to, e.g., sulfur ylides, can cyclopropanate acceptor-substituted olefins by an addition-elimination mechanism. If, e.g., acceptor-substituted olefins are added to a mixture of a simple alkene and the metathesis catalyst PhWCl3/AlCl3, the metathesis reaction is quenched and small amounts of acceptor-substituted cyclopropanes can be isolated [34]. [Pg.8]

These observations indicate that there is no sharp borderline between cyclopro-panating and metathesis-catalyzing carbene complexes. Fortunately the number of carbene complexes which mediate both cyclopropanation and alkene metathesis is rather small, and in the detailed overview given in the following sections it will become apparent that most carbene complexes are highly selective and thus valuable reagents for organic synthesis. [Pg.8]

Metallacyclobutanes or other four-membered metallacycles can serve as precursors of certain types of carbene complex. [2 + 2] Cycloreversion can be induced thermally, chemically, or photochemically [49,591-595]. The most important application of this process is carbene-complex-catalyzed olefin metathesis. This reaction consists in reversible [2 + 2] cycloadditions of an alkene or an alkyne to a carbene complex, forming an intermediate metallacyclobutane. This process is discussed more thoroughly in Section 3.2.5. [Pg.100]

Table 3.15. Fischer-type carbene complexes as catalysts for homogeneous-phase alkene metathesis. Table 3.15. Fischer-type carbene complexes as catalysts for homogeneous-phase alkene metathesis.
The order of reactivity of these three catalysts towards alkenes (but also towards oxygen) is 1 > 3 > 2. As illustrated by the examples in Table 3.18, these catalysts tolerate a broad spectrum of functional groups. Highly substituted and donor- or acceptor-substituted olefins can also be suitable substrates for RCM. It is indeed surprising that acceptor-substituted alkenes can be metathesized. As discussed in Section 3.2.2.3 such electron-poor alkenes can also be cyclopropanated by nucleophilic carbene complexes [34,678] or even quench metathesis reactions [34]. This seems, however, not to be true for catalysts 1 or 2. [Pg.150]

J Non-Heteroatom-Substituted Carbene Complexes Table 3.21. Preparation of alkenes and dienes by cross metathesis. [Pg.164]

One special case of cross metathesis is ring-opening cross metathesis. When strained, cyclic alkenes (but not cyclopropenes [818]) are treated with a catalytically active carbene complex in the presence of an alkene, no ROMP but only the formation of monomeric cross-metathesis product is observed [818,937], The reaction, which works best with terminal alkenes, must be interrupted when the strained cycloalkene is consumed, to avoid further equilibration. As illustrated by the examples in Table 3.22, high yields and regioselectivities can be achieved with this interesting methodology. [Pg.168]


See other pages where Carbene complexes alkene metathesis is mentioned: [Pg.556]    [Pg.167]    [Pg.13]    [Pg.14]    [Pg.50]    [Pg.63]    [Pg.192]    [Pg.259]    [Pg.144]    [Pg.164]    [Pg.475]    [Pg.8]    [Pg.106]    [Pg.127]    [Pg.141]    [Pg.150]   
See also in sourсe #XX -- [ Pg.1115 ]

See also in sourсe #XX -- [ Pg.5 ]

See also in sourсe #XX -- [ Pg.1115 ]

See also in sourсe #XX -- [ Pg.5 ]




SEARCH



Alkene metathesis

Alkene metathesis complexes

Alkene metathesis intermediate carbene complex

Alkene metathesis metal carbene complexes

Alkenes carbenes

Carbene complexes in alkene metathesis

Carbene complexes metathesis

Carbene-alkene complexes

Carbenes metathesis

Complexes alkenes

© 2024 chempedia.info