Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

CLUSTERS carbenes

Tungsten-Re and W-Ir binuclear carbene complexes as well as cluster carbene complexes are prepared via acylation-alkylation of the corresponding carbonyl compounds. [Pg.117]

In pyridinium chloride ionic liquids and in l,2-dimethyl-3-hexylimida2olium chloride ([HMMIMjCl), where the C(2) position is protected by a methyl group, only [PdClJ was observed, whereas in [HMIMjCl, the EXAFS showed the formation of a bis-carbene complex. In the presence of triphenylphosphine, Pd-P coordination was observed in all ionic liquids except where the carbene complex was formed. During the Heck reaction, the formation of palladium was found to be quicker than in the absence of reagents. Overall, the EXAFS showed the presence of small palladium clusters of approximately 1 nm diameter formed in solution. [Pg.145]

The activation of silylene complexes is induced both photochemically or by addition of a base, e.g. pyridine. A similar base-induced cleavage is known from the chemistry of carbene complexes however, in this case the carbenes so formed dimerize to give alkenes. Finally, a silylene cleavage can also be achieved thermally. Melting of the compounds 4-7 in high vacuum yields the dimeric complexes 48-51 with loss of HMPA. The dimers, on the other hand, can be transformed into polysilanes and iron carbonyl clusters above 120 °C. In all cases, the resulting polymers have been identified by spectroscopic methods. [Pg.27]

These carbene (or alkylidene) complexes are used for various transformations. Known reactions of these complexes are (a) alkene metathesis, (b) alkene cyclopropanation, (c) carbonyl alkenation, (d) insertion into C-H, N-H and O-H bonds, (e) ylide formation and (f) dimerization. The reactivity of these complexes can be tuned by varying the metal, oxidation state or ligands. Nowadays carbene complexes with cumulated double bonds have also been synthesized and investigated [45-49] as well as carbene cluster compounds, which will not be discussed here [50]. [Pg.6]

The fact that only ethylene and tetramethylethylene are evolved from exp-[8]rotane 168 and permethyl-exp-[6]rotane 173 upon thermal decomposition leads to the conclusion that the spirocyclopropane moieties in these expanded [n]rotanes fragment only externally and leave carbene moieties behind. Indeed, the MALDI-TOF mass spectra of several exp-[ ]rotanes show fragment ions with M minus 28. Thus, if this fragmentation in an exp-[n]rotane were to continue n times, a cyclic C carbon cluster would be left over. So far, however, a fragment ion with m/z = 480 corresponding to 182 has not been recorded in the mass spectrum of exp-[8]rotane 168 and it remains to be seen whether a Cgo cluster 183 will be detected in the mass spectrum of exp-[12]rotane 171 (Scheme 35). [Pg.36]

Ethynylhydroxy carbene [13] has been obtained by photoreaction (A>400 nm) of a triatomic carbon cluster with water in an argon matrix and studied by IR spectroscopy (Ortman et al., 1990). Five frequencies were measured for [13] and a vibrational band at 1999.8 cm has been assigned to the C=C stretch. This value is more than 100 cmlower than the C=C stretching vibrations in acetylene derivatives, indicating that the C=C bond in the carbene [13] has lost some of its triple bond character. At the same... [Pg.14]

For the most electronegative ligand, fluorine, we expect a relativistic destabilization in the Au—F bond, which was indeed determined to be —0.36eV at the coupled cluster level [182,183], Nevertheless, AuF has a sufficiently high dissociation energy of about 3.17 eV and has been identified recently in the gas phase [184]. In solution or in the solid state it would disproportionate to metallic Au and compounds of Au (AuF3 for the solid). However, a carbene-stabilized Au(I) fluoride was synthesized only very recently (see discussion in the next section) [185]. [Pg.202]

This facile approach to the carbene chemistry of rhenium has not yet been investigated with technetium. Further reactions with the technetium cluster 44a have been performed in C6H6/HC1 to yield the compound [( 6H6)Tc(CO)3]+ (66) which previously had only been described for manganese and rhenium [81]. "Tc-NMR of the latter compound exhibits a resonance at -1983 ppm (relative to [Tc04]- ), and it therefore fits very well into the range proposed for Tc(I) complexes. [Pg.176]

A second major class of ion-molecule reactions that is relatively poorly studied consists of systems involving very unsaturated hydrocarbon neutrals, especially radicals. The unsaturated nature of the organic chemistry in interstellar clouds leads to sizeable abundances of very unsaturated hydrocarbons such as the polyacetylenes HC H, the carbenes H2C , the radicals C H, and the clusters Cn. Although some work has been done on the chemistry of such species, much of the relevant ion-molecule chemistry involving ions such as C+, CH3, and even C2H2 must be guessed at from generalizations based on a small number of studied systems. [Pg.31]

Dirhodium(II) carboxylate catalysts have been used extensively for the catalysis of carbene insertions. In many cases, impressive selectivities have been achieved (19-21). In an effort to find selective catalysts for carbenoid insertions, Moody screened a series of dirhodium(II) carboxylate catalysts for their ability to catalyze carbenoid Si-H insertion (22). The authors surveyed the commercially available carboxylic acids, -10,000 of which are chiral. The members of this group that contained functionality that is incompatible to the reaction were culled out. The remaining chiral carboxylic acids (-2000 compounds) were then grouped into 80 different clusters. There is no discussion presented for the criteria used in the grouping of the acids. A representative acid from each cluster was then chosen for... [Pg.437]

Metal bromides, 4 322-330 Metal can food packaging, 18 37-39 Metal-carbene complexes, 26 926 Metal-carbon compounds, 4 648, 650 Metal-carbon eutectic fixed points, 24 454 Metal carbonyl catalysts, supported, 16 75 Metal carbonyl complexes, 16 73 Metal carbonyls, 15 570 16 58-78 bonding and structure of, 16 59-64 from carbon monoxide, 5 12 in catalysis, 16 72-75 economic aspects of, 16 71 health and safety aspects of, 16 71 heteronuclear, 16 69-71 high nuclearity, 16 66-69 high nuclearity carbonyl clusters, 16 64-66... [Pg.565]

The reaction of two equivalents of W(C=CC=CH)(CO)3Cp with Ru3(CO)io (NCMe)2 gives the RU3W cluster 149 (Scheme 30), which is also obtained from 135 and W(C=CC=CH)(CO)3Cp. The extended organic ligand is formed by coupling of two molecules of the diynyl complex with two of CO, to form a cyclopen-tadienone attached by a carbenic interaction to the cluster W atom, and featuring formylethynyl and C=CW(CO)3Cp substituents. " One of the elementary steps in the reaction mechanism may involve formal rearrangement of the diyne to a dicarbyne. [Pg.148]

Although it is always somewhat risky to draw conclusions about surface reactions from solution experiments, a number of such studies support the curbide/carbene mechanistic proposal. A model compound for the carbide proposal is a butterfly cluster formed from an unusual six-coordinate carbide 190... [Pg.370]

The reaction of an osmium carbene cluster containing the cyclic carbene ligand = C(CH=CH)2C(Ph)H which is side on bound to a nonacarbo-nyltriosmium unit with either elemental sulfur/NEt3 or cyclohexene sulfide also afforded a rf-thioketone complex.184... [Pg.159]

The addition of transition metal fragments ML (L = two-electron donor ligand) across formally unsaturated metal-metal or metal-carbon bonds is a well-developed synthetic route to heteronuclear clusters (1,2,11,12,27) and has received theoretical justification from Hoffmann s isolobal principle (46). The addition of a PtL2 fragment across an M=M double bond may be considered as analogous to the reaction of a carbene with an olefin, resulting in a cyclopropane. The use of isolobal analogies in the directed synthesis of heteronuclear clusters has been reviewed (11,12,27). [Pg.304]

Complexes containing the unsaturated carbenes vinylidene (G and H) and propadienylidene (allenylidene) (I and J), and their cluster-bound analogs, are also known, although general routes to these reactive compounds have been discovered only within the last five years or so. Vinylidene, the simplest unsaturated carbene, has never been observed experimentally, as it undergoes an extremely fast 1,2-hydrogen shift to give acetylene ... [Pg.61]


See other pages where CLUSTERS carbenes is mentioned: [Pg.331]    [Pg.6]    [Pg.331]    [Pg.6]    [Pg.2]    [Pg.112]    [Pg.211]    [Pg.430]    [Pg.322]    [Pg.176]    [Pg.122]    [Pg.131]    [Pg.252]    [Pg.286]    [Pg.92]    [Pg.188]    [Pg.310]    [Pg.230]    [Pg.170]    [Pg.167]    [Pg.587]    [Pg.462]    [Pg.159]    [Pg.197]    [Pg.228]    [Pg.256]   
See also in sourсe #XX -- [ Pg.321 , Pg.329 ]




SEARCH



© 2024 chempedia.info