Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Capillary electrophoresis choice

At present, the most promising methods for synthetic colorant analysis seem to be those based on separation approaches such as HPLC and capillary electrophoresis (CE). CE is the method of choice for the determination of synthetic dyes in biological materials while HPLC is generally a more suitable method for the identification and determination of hydrophobic natural pigments, having a better sensitivity and efficiency than CE. [Pg.542]

Capillary electrophoresis is still in a state of evolution and a technique of choice for certain applications (chiral analysis small ion analysis in food and beverage industries bioanalysis). The number of reviews [365,858,884,889-896], books and manuals [365,897-903] published on (HP)CE/CEC/CZE in the last decade is overwhelming, in particular in relation to the importance of the technique (see also Bibliography). CE-LIFS has been reviewed [904]. [Pg.277]

The method of choice for the measurement of ionization constants is potentio-metry [35,112-119]. Special circumstances warrant the determination of the pKa by UV spectrophotometry [120-143], capillary electrophoresis (CE) [144-147], and a chromatographic technique [148]. In principle, UV and CE methods are more sensitive and less sample-demanding than is the pH-metric method. That not withstanding, the latter method is preferred because it is so much better developed,... [Pg.22]

The basic components of an LC-NMR system are some form of chromatographic instrument and an NMR spectrometer equipped with a flow-probe, as shown in Fig. 19.17. In terms of the chromatography of choice, there are many examples in the literature of a wide array of separation instruments employed, from SFC to capillary electrophoresis (CE) [87,88]. By far the most common method (not necessarily the best choice from a separation point of view) of achieving the desired separation is through HPLC. There are many commercial... [Pg.734]

Capillary electrophoresis (CE) either coupled to MS or to laser-induced fluorescence (LIF) is less often used in metabolomics approaches. This method is faster than the others and needs a smaller sample size, thereby making it especially interesting for single cell analysis [215] The most sensitive mass spectrometers are the Orbitrap and Fourier transform ion cyclotron resonance (FT-ICR) MS [213]. These machines determine the mass-to-charge ratio of a metabolite so accurate that its empirical formula can be predicted, making them the techniques of choice for the identification of unknown peaks. [Pg.151]

The various types of capillary electrophoresis are performed either in free solution or in gels. The choice of method depends on the nature of the sample and the analytical objective but capillary gel electrophoresis, including iso-electric focusing and SDS electrophoresis, is particularly useful for protein applications. [Pg.398]

The choice of HPLC as a separation technique in biopharmaceutical development may depend upon its scalability, even if its resolving power is less than other techniques. For example, HPLC may be used in preference to gel electrophoresis or capillary electrophoresis, where scaleup is difficult or impossible. [Pg.39]

Chiral separation of drng molecules and of their precursors, in the case of synthesis of enantiomerically pure drugs, is one of the important application areas of HPLC in pharmaceutical analysis. Besides HPLC, capillary electrophoresis (CE) is another technique of choice for chiral separations. Chapter 18 provides an overview of the different modes (e.g., direct and indirect ones) of obtaining a chiral separation in HPLC and CE. The direct approaches, i.e., those where the compound of interest is not derivatized prior to separation, are discussed in more detail since they are cnrrently the most frequently used techniques. These approaches require the use of the so-called chiral selectors to enable enantioselective recognition and enantiomeric separation. Many different molecnles have been nsed as chiral selectors, both in HPLC and CE. They can be classified into three different groups, based on their... [Pg.12]

Over the past 40 years, capillary electrophoresis (CE) has advanced significantly as a technique for biomolecular characterization. It has not only passed the transition from a laboratory curiosity to a mature instrumental-based method for micro-scale separation, but also emerged as an indispensable tool in the biotech and pharmaceutical industries. CE has become a method of choice in research and development (R D) for molecular characterization, and in quality control (QC) for the release of the therapeutic biomolecules.In the biopharmaceutical industry, more and more CE methods have been validated to meet International Conference on Harmonization (ICH) requirements. In this chapter, we present real industrial examples to demonstrate the role of CE in R D of pharmaceutical products. The focus in this chapter is on method development analytical control for manufacturing and release of therapeutic proteins and antibodies. [Pg.358]

Several variants of separation methods based on dialysis, ultrafiltration, and size exclusion chromatography have been developed that work under equilibrium conditions. Size exclusion chromatography especially has become the method of choice for binding measurements. The Hummel-Dreyer method, the vacancy peak method, and frontal analysis are variants that also apply to capillary electrophoresis. In comparison to chromatographic methods, capillary electrophoresis is faster, needs only minimal amounts of substances, and contains no stationary phase that may absorb parts of the equilibrium mixture or must be pre-equilibrated. [Pg.55]

Because of the small amounts of sample that are usually obtained, coupled GC-MS is the method of choice for analysis of volatile pheromones. The analysis of the less-volatile lipids and polar pheromone components may require derivatization and microchemical tests, both to improve chromatographic characteristics and to provide information about the structures. It is likely that chromatographic techniques with high separation power and high sensitivity for polar compounds, such as coupled capillary electrophoresis-mass spectrometry, will prove useful for analysis of spider extracts in future studies. [Pg.143]

The performance of capillary electrophoresis, for the separation of biopolymers, is comparable to or better than that of HPLC. The basis for separation relies on the choice of an appropriate buffer to be adapted to the analysis. Although reproducibility is more difficult to control, mass sensitivity is relatively high a few thousand molecules can be detected. Sample quantity is very small and solvent and reagent consumption during an analysis is negligible (Fig. 8.10). [Pg.119]

Since the determination of polymeric anthocyanins is still an open problem, new analytical methods such as capillary electrophoresis and SFC will perhaps make the analysis of these polymeric pigments possible. Due to advantages such as speed and selectivity, it can be assumed that HPLC will stay the method of choice for the analysis of monomeric anthocyanins in the coming years. [Pg.857]

In contrast, CSPs have achieved great repute in the chiral separation of enantiomers by chromatography and, today, are the tools of the choice of almost all analytical, biochemical, pharmaceutical, and pharmacological institutions and industries. The most important and useful CSPs are available in the form of open and tubular columns. However, some chiral capillaries and thin layer plates are also available for use in capillary electrophoresis and thin-layer chromatography. The chiral columns and capillaries are packed with several chiral selectors such as polysaccharides, cyclodextrins, antibiotics, Pirkle type, ligand exchangers, and crown ethers. [Pg.27]

This type of detection has achieved much development in the last few years due to its simplicity. A specific revision on conductimetric (and potentiometric) detection in conventional and microchip capillary electrophoresis can be found in Ref. [57]. It is considered a universal detection method, because the conductivity of the sample plug is compared with that of the solution and no electroactivity of the analytes is required. Two electrodes are either kept in galvanic contact with the electrolyte (contact conductivity) or are external and coupled capaci-tively to the electrolyte (contactless mode). An alternating current potential is applied across the electrodes and the current due to the conductivity of the bulk solution is measured. As the signal depends on the difference in conductivity between solution and analyte zones, the choice of the electrolyte is crucial. It is necessary that it presents different conductivity without affecting sensitivity. [Pg.835]

The apparent differences in identified photoproducts between marine and freshwater systems may be due to fundamental differences in DOM composition (see Chapters 3 and 5) or to differences in analytical approaches (e.g., capillary electrophoresis has often been the method of choice to identify DOM photoproducts in freshwater systems, but this method is not appropriate for high-salinity marine samples Table I). The fact that most of the labile photoproducts found only in freshwater environments have been identified by more than one analytical approach, however, suggests that methods alone cannot explain the 14 nonoverlapping photoproducts. On the other hand, studies conducted by the same researcher(s) tend to report the same suite of compounds, even across marine/freshwater boundaries (e.g., Kieber et al., 1990), suggesting that optimization of the analytical approach and/or researcher focus may be influencing the data. More studies identifying DOM photoproducts have been conducted in freshwater environments than in marine environments (12 vs. 6), a factor that is also likely to influence the number of reported photoproducts. At this point, evidence is insufficient to determine whether DOM photoproducts that are currently unique to either marine or freshwater environments can be attributed to inherent DOM compositional differences or to analytical approach. [Pg.249]

Once the sample preparation is complete, the analysis is carried out by an instrument of choice. A variety of instruments are used for different types of analysis, depending on the information to be acquired for example, chromatography for organic analysis, atomic spectroscopy for metal analysis, capillary electrophoresis for DNA sequencing, and electron microscopy for small structures. Common analytical instrumentation and the sample preparation associated with them are listed in Table 1.1. The sample preparation depends on the analytical techniques to be employed and their capabilities. For instance, only a few microliters can be injected into a gas chromatograph. So in the example of the analysis of pesticides in fish liver, the ultimate product is a solution of a few microliters that can be injected into a gas chromatograph. Sampling, sample preservation, and sample preparation are... [Pg.2]

In the 1980s, a new separations technique, capillary electrophoresis (CE), was developed. CE created great excitement and was initially expected to replace HPLC as the method of choice for ultratrace analyses. However, it became evident that CE was complementary to HPLC and filled a different niche in separations. Since each technique has advantages and disadvantages, it is important to understand the basic theory that underlies the separations in order to choose the right technique for a problem. [Pg.295]


See other pages where Capillary electrophoresis choice is mentioned: [Pg.90]    [Pg.79]    [Pg.127]    [Pg.466]    [Pg.65]    [Pg.141]    [Pg.178]    [Pg.310]    [Pg.397]    [Pg.231]    [Pg.27]    [Pg.338]    [Pg.312]    [Pg.478]    [Pg.22]    [Pg.132]    [Pg.225]    [Pg.228]    [Pg.278]    [Pg.591]    [Pg.140]    [Pg.37]    [Pg.228]    [Pg.337]    [Pg.178]    [Pg.2]    [Pg.231]    [Pg.246]    [Pg.364]    [Pg.403]    [Pg.370]    [Pg.375]   


SEARCH



Capillary choice

© 2024 chempedia.info