Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Calls reaction with

Unlike rebounding reactions, stripping reactions are usually cteuacterized by large cross sections that are weakly depoid on the translational energy. The typical representatives of stripping reactions are the so-called reactions with the electron transfer at the intermediate stage. For exanq)le, the reaction K + Brz proceeds via the mechanism... [Pg.44]

This is the situation exploited by the so-called isolation method to detennine the order of the reaction with respect to each species (see chapter B2.1). It should be stressed that the rate coefficient k in (A3,4,10) depends upon the definition of the in the stoichiometric equation. It is a conventionally defined quantity to within multiplication of the stoichiometric equation by an arbitrary factor (similar to reaction enthalpy). [Pg.763]

For themial unimolecular reactions with bimolecular collisional activation steps and for bimolecular reactions, more specifically one takes the limit of tire time evolution operator for - co and t —> + co to describe isolated binary collision events. The corresponding matrix representation of f)is called the scattering matrix or S-matrix with matrix elements... [Pg.773]

Several studies have demonstrated the successful incoriDoration of [60]fullerene into polymeric stmctures by following two general concepts (i) in-chain addition, so called pearl necklace type polymers or (ii) on-chain addition pendant polymers. Pendant copolymers emerge predominantly from the controlled mono- and multiple functionalization of the fullerene core with different amine-, azide-, ethylene propylene terjDolymer, polystyrene, poly(oxyethylene) and poly(oxypropylene) precursors [63,64,65,66,62 and 66]. On the other hand, (-CggPd-) polymers of the pearl necklace type were fonned via the periodic linkage of [60]fullerene and Pd monomer units after their initial reaction with thep-xy y ene diradical [69,70 and 71]. [Pg.2416]

Alkyl hydrogen sulfates can be converted to alcohols by heating them with water This IS called hydrolysis, because a bond is cleaved by reaction with water It is the oxygen-sulfur bond that is broken when an alkyl hydrogen sulfate undergoes hydrolysis... [Pg.246]

The linear a olefins described m Section 14 15 are starting materials for the preparation of a variety of aldehydes by reaction with carbon monoxide The process is called hydroformylation... [Pg.711]

Section 21 8 Alkylation of diethyl malonate followed by reaction with urea gives derivatives of barbituric acid called barbiturates, which are useful sleep promoting drugs... [Pg.907]

Rhoda.mines, Rhodamines are commercially the most important arninoxanthenes. If phthalic anhydride is used in place of formaldehyde in the above condensation reaction with y -dialkylarninophenol, a triphenyknethane analogue, 9-phenylxanthene, is produced. Historically, these have been called rhodamines. Rhodamine B (Basic Violet 10, Cl45170) (17) is usually manufactured by the condensation of two moles of y -diethylaminophenol with phthahc anhydride (24). An alternative route is the reaction of diethylamine with fluorescein dichloride [630-88-6] (3,6-dichlorofluoran) (18) under pressure. [Pg.400]

With aldehydes, primary alcohols readily form acetals, RCH(OR )2. Acetone also forms acetals (often called ketals), (CH2)2C(OR)2, in an exothermic reaction, but the equiUbrium concentration is small at ambient temperature. However, the methyl acetal of acetone, 2,2-dimethoxypropane [77-76-9] was once made commercially by reaction with methanol at low temperature for use as a gasoline additive (5). Isopropenyl methyl ether [116-11-OJ, useful as a hydroxyl blocking agent in urethane and epoxy polymer chemistry (6), is obtained in good yield by thermal pyrolysis of 2,2-dimethoxypropane. With other primary, secondary, and tertiary alcohols, the equiUbrium is progressively less favorable to the formation of ketals, in that order. However, acetals of acetone with other primary and secondary alcohols, and of other ketones, can be made from 2,2-dimethoxypropane by transacetalation procedures (7,8). Because they hydroly2e extensively, ketals of primary and especially secondary alcohols are effective water scavengers. [Pg.94]

The rate law draws attention to the role of component concentrations. AH other influences are lumped into coefficients called reaction rate constants. The are not supposed to change as concentrations change during the course of the reaction. Although are referred to as rate constants, they change with temperature, solvent, and other reaction conditions, even if the form of the rate law remains the same. [Pg.508]

The biochemical basis for the toxicity of mercury and mercury compounds results from its ability to form covalent bonds readily with sulfur. Prior to reaction with sulfur, however, the mercury must be metabolized to the divalent cation. When the sulfur is in the form of a sulfhydryl (— SH) group, divalent mercury replaces the hydrogen atom to form mercaptides, X—Hg— SR and Hg(SR)2, where X is an electronegative radical and R is protein (36). Sulfhydryl compounds are called mercaptans because of their ability to capture mercury. Even in low concentrations divalent mercury is capable of inactivating sulfhydryl enzymes and thus causes interference with cellular metaboHsm and function (31—34). Mercury also combines with other ligands of physiological importance such as phosphoryl, carboxyl, amide, and amine groups. It is unclear whether these latter interactions contribute to its toxicity (31,36). [Pg.109]

The hydrolysis process, ie, reaction with water, for lime is called slaking and produces hydrated lime, Ca(OH)2. Calcium hydroxide is a strong base but has limited aqueous solubiHty, 0.219 g Ca(OH)2/100 g H2O, and is therefore often used as a suspension. As an alkaH it finds widespread iadustrial appHcatioa because it is cheaper than sodium hydroxide. [Pg.406]

The pyritic sulfur in coal can undergo reaction with sulfate solutions to release elemental sulfur (see Sulfurremoval and recovery). Processes to reduce the sulfur content of coal have been sought (75). The reaction of coal and sulfuric acid has been used to produce cation exchangers, but it was not very efficient and is no longer employed. Efforts have turned to the use of hot concentrated alkaH in a process called Gravimelt. [Pg.224]

Acetals. Acetal resins (qv) are polymers of formaldehyde and are usually called polyoxymethylene [9002-81-7]. Acetal homopolymer was developed at Du Pont (8). The commercial development of acetal resins required a pure monomer. The monomer is rigorously purified to remove water, formic acid, metals, and methanol, which act as chain-transfer or reaction-terminating agents. The purified formaldehyde is polymerized to form the acetal homopolymer the polymer end groups are stabilized by reaction with acetic anhydride to form acetate end groups (9). [Pg.36]

Available Chlorine Test. The chlorine germicidal equivalent concentration test is a practical-type test. It is called a capacity test. Under practical conditions of use, a container of disinfectant might receive many soiled, contaminated instniments or other items to be disinfected. Eventually, the capacity of the disinfectant to serve its function would be overloaded due to reaction with the accumulated organic matter and organisms. The chlorine germicidal equivalent concentration test compares the load of a culture of bacteria that a concentration of a disinfectant will absorb and still kill bacteria, as compared to standard concentrations of sodium hypochlorite tested similarly. In the test, 10 successive additions of the test culture are added to each of 3 concentrations of the hypochlorite. One min after each addition a sample is transferred to the subculture medium and the next addition is made 1.5 min after the previous one. The disinfectant is then evaluated in a manner similar to the phenol coefficient test. For equivalence, the disinfectant must yield the same number of negative tubes as one of the chlorine standards. [Pg.139]

In the benzene and naphthalene series there are few examples of quinone reductions other than that of hydroquinone itself. There are, however, many intermediate reaction sequences in the anthraquinone series that depend on the generation, usually by employing aqueous "hydros" (sodium dithionite) of the so-called leuco compound. The reaction with leuco quinizarin [122308-59-2] is shown because this provides the key route to the important 1,4-diaminoanthtaquinones. [Pg.289]

Related to the preceding is the classification with respect to oidei. In the power law rate equation / = /cC C, the exponent to which any particular reactant concentration is raised is called the order p or q with respect to that substance, and the sum of the exponents p + q is the order of the reaction. At times the order is identical with the molecularity, but there are many reactions with experimental orders of zero or fractions or negative numbers. Complex reactions may not conform to any power law. Thus, there are reactions of ... [Pg.683]

Health Hazards Information - Recommended Personal Protective Equipment Maximum protective clothing goggles and face shield Symptoms Following Exposure Severe bums caused by burning metal or by caustic soda formed by reaction with moisture on skin General Treatment for Exposure SKIN brush off any metal, then flood with water for at least 15 min. treat as heat or caustic bum call a doctor Toxicity by Inhalation (Ihreshold limit Value) Not pertinent Short-Term Exposure Limits Not pertinent Toxicity by Ingestion Not pertinent Late Toxicity None Vtqtor (Gas) Irritant Characteristics Non-volatile Liquid or lid Irritant Characteristics Severe skin irritant. Cause second- and third-degree burns on short contact and is very injurious to the eyes Odor Threshold Not pertinent. [Pg.344]


See other pages where Calls reaction with is mentioned: [Pg.54]    [Pg.835]    [Pg.439]    [Pg.177]    [Pg.20]    [Pg.127]    [Pg.634]    [Pg.667]    [Pg.394]    [Pg.11]    [Pg.515]    [Pg.313]    [Pg.254]    [Pg.476]    [Pg.66]    [Pg.352]    [Pg.50]    [Pg.341]    [Pg.240]    [Pg.572]    [Pg.282]    [Pg.268]    [Pg.430]    [Pg.48]    [Pg.124]    [Pg.2430]    [Pg.219]    [Pg.49]    [Pg.609]    [Pg.487]    [Pg.315]    [Pg.316]    [Pg.349]   
See also in sourсe #XX -- [ Pg.2 , Pg.484 , Pg.485 , Pg.486 ]




SEARCH



Acetone reaction with Call

Calling

© 2024 chempedia.info