Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Calibration, generally sensitivity

Sensitivity For a coulometric method of analysis, the calibration sensitivity is equivalent to tiF in equation 11.25. In general, coulometric methods in which the analyte s oxidation or reduction involves a larger value of n show a greater sensitivity. [Pg.508]

Scales are sensitive to force appHed in one direction only, eg, a scale with a horizontal platform is sensitive to forces appHed perpendicular to the platform. Scales should be leveled before calibration and whenever they are moved portable scales generally have a bubble level to facilitate leveling. [Pg.331]

Visual and photoelectric colorimeters may be used as turbidimeters a blue filter usually results in greater sensitivity. A calibration curve must be constructed using several standard solutions, since the light transmitted by a turbid solution does not generally obey the Beer-Lambert Law precisely. [Pg.727]

The radical concentration, when coupled with information on the rate of polymerization, allows k (and k,) to be calculated. The EPR methods have been applied to various polymerizations including those of B, DMA, MMA,361 566 S 67 368 and VAc.369 Values for kp are not always in complete agreement with those obtained by other methods (e.g. PLP, SIP) and this may reflect a calibration problem. Problems may also arise because of the heterogeneity of the polymerization reaction mixture,365 and insufficient sensitivity for the radical concentrations in low conversion polymerizations 63 or very low molecular weights. Some data must be treated with caution. However, the difficulties are now generally recognized and are being resolved. 60... [Pg.217]

The mouse bioassay for PSP, described in its original form by Sommer in 1937 (29), involves i.p. injection of a test solution, typically 1 mL, into a mouse weighing 17-23 g, and observing the time from injection to death. From the death time and mouse weight, the number of mouse units is obtained by reference to a standard table 1 mouse unit is defined as the amount of toxin that will kill a 20-g mouse in 15 min (77). The sensitivity of the mouse population used is calibrated using reference standard saxitoxin (70). In practice, the concentration of the test solution is adjusted to result in death times of approximately 6 min. Once the correct dilution has been established, 5 mice will generally provide a result differing by less than 20% from the true value at the 95% confidence level. The use of this method for the various saxitoxins and indeterminate mixtures of them would appear... [Pg.50]

With the multitude of transducer possibilities in terms of electrode material, electrode number, and cell design, it becomes important to be able to evaluate the performance of an LCEC system in some consistent and meaningful maimer. Two frequently confused and misused terms for evaluation of LCEC systems are sensitivity and detection limit . Sensitivity refers to the ratio of output signal to input analyte amount generally expressed for LCEC as peak current per injected equivalents (nA/neq or nA/nmol). It can also be useful to define the sensitivity in terms of peak area per injected equivalents (coulombs/neq) so that the detector conversion efficiency is obvious. Sensitivity thus refers to the slope of the calibration curve. [Pg.24]

Principles and Characteristics Mass spectrometry can provide the accurate mass determination in a direct measurement mode. For a properly calibrated mass spectrometer the mass accuracy should be expected to be good to at least 0.1 Da. Accurate mass measurements can be made at any resolution (resolution matters only when separating masses). For polymer/additive deformulation the nominal molecular weight of an analyte, as determined with an accuracy of 0.1 Da from the mass spectrum, is generally insufficient to characterise the sample, in view of the small mass differences in commercial additives. With the thousands of additives, it is obvious that the same nominal mass often corresponds to quite a number of possible additive types, e.g. NPG dibenzoate, Tinuvin 312, Uvistat 247, Flexricin P-1, isobutylpalmitate and fumaric acid for m = 312 Da see also Table 6.7 for m = 268 Da. Accurate mass measurements are most often made in El mode, since the sensitivity is high, and reference mass peaks are readily available (using various fluorinated reference materials). Accurate mass measurements can also be made in Cl... [Pg.355]

In the above-described measurement, which we call the absolute method, all pumps have equal speeds (rpm) owing to interconnection to the same drive-shaft. In order to express, if required, a deviation registered for the analyte concentration, one must calibrate with a standard by varying its rpm (B) with respect to that of the titrant (A) a B/A rpm ratio greater than unity means a proportionally lower concentration and vice versa. In general, the absolute method serves to control a sample stream with nearly constant analyte concentration as a sensor one uses not only electroanalytical but often also optical detectors. However, with considerably varying analyte concentrations the differential method is more attractive its principle is that in the set-up in Fig. 5.15 and with the sensor adjusted to a fixed and most sensitive set-point, the rpm of the sample stream (C) is varied with respect to that of the titrant (A) by a feedback control (see Fig. 5.3a) from the sensor via a regulator towards the... [Pg.346]

Since many new substances of interest are very poorly soluble in water, the assessment of the pKa in aqueous solution can be difficult and problematic. Potentiometry can be a quick technique for such assessment, provided the solubility of the substance is at least 100 pM. (Solutions as dilute as 10 pM can still be analyzed, but special attention must be given to electrode calibration, and ambient carbon dioxide must be excluded.) If the substance is soluble to only 1-10 pM and possesses a pH-sensitive UV chromophore, then spectrophotometry can be applied. CE methods may also be useful since very small sample quantities are required, and detection methods are generally quite sensitive. [Pg.29]

A calibration procedure has to be validated with regard to general and specific requirements under which the calibration model has been developed. For this purpose, it is important to test whether the conditions represented in Fig. 6.6 are fulfilled. On the other hand, it is to assure by experimental studies that certain performance features (accuracy, precision, sensitivity, selectivity, specificity, linearity, working range, limits of detection and of quantification, robustness, and ruggedness, see Chap. 7) fulfil the expected requirements. [Pg.166]

In general, from nonlinear calibrations result variable sensitivities expressed by sensitivity functions S(x) ... [Pg.178]

Routine calibration of an NO sensor is essential in order to ensure accurate experimental results. One of three calibration techniques is generally used, depending on the sensor type, and will be described in the following section. Each of these methods has already been the subject of several reviews [23, 72-74] and will therefore only be summarized here. NO sensors are typically sensitive to temperature. Therefore, calibration is usually best performed at the temperature at which the measurements will be made. [Pg.31]

Of the three general methods, the last seems to be the most practical. Theoretically, with high enough concentrations of hydrocarbons, the first method, the headspace analysis, should be both the most accurate and the easiest to calibrate. Operationally, it leaves much to be desired both because of the problems of sensitivity and those of the accommodation of the larger molecules in water. The second method, vacuum degassing, requires much more equipment than the third method and requires that large amounts of water vapor be removed before the sample is injected into the gas chromatograph. The last method is so much less complicated that even with its calibration problems it has been adopted almost universally. [Pg.381]

For a qualitative analysis it is sufficient to be able to apply a test which has a known sensitivity limit so that negative and positive results may be seen in the right perspective. Where a quantitative analysis is made, however, the relation between measurement and analyte must obey a strict and measurable proportionality only then can the amount of analyte in the sample be derived from the measurement. To maintain this proportionality it is generally essential that all reactions used in the preparation of a sample for measurement are controlled and reproducible and that the conditions of measurement remain constant for all similar measurements. A premium is also placed upon careful calibration of the methods used in a quantitative analysis. These aspects of chemical analysis are a major pre-occupation of the analyst. [Pg.612]

A portion of a spectrum that includes emission lines of mercury and lead is shown in Figure 4 the insert is a calibration plot for lead in this sample set. In general, LIBS provides detection on the ppm level for most elements in this case on the order of 30 ppm for lead in glass based matrices. For higher sensitivity, LA-ICP-MS provide ppb detection. [Pg.297]


See other pages where Calibration, generally sensitivity is mentioned: [Pg.288]    [Pg.209]    [Pg.59]    [Pg.2319]    [Pg.24]    [Pg.398]    [Pg.888]    [Pg.240]    [Pg.247]    [Pg.175]    [Pg.262]    [Pg.14]    [Pg.266]    [Pg.290]    [Pg.393]    [Pg.810]    [Pg.974]    [Pg.21]    [Pg.260]    [Pg.330]    [Pg.323]    [Pg.229]    [Pg.311]    [Pg.262]    [Pg.107]    [Pg.250]    [Pg.290]    [Pg.239]    [Pg.72]    [Pg.265]    [Pg.359]    [Pg.393]    [Pg.158]    [Pg.208]    [Pg.68]    [Pg.289]   
See also in sourсe #XX -- [ Pg.13 ]




SEARCH



Calibration, generally

© 2024 chempedia.info