Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Calcination calcium carbonate

Typical fillers calcium carbonate, calcinated clay, aluminum hydroxide, magnesium carbonate, magnesium hydroxide, antimony trioxide, calcium borate, huntite, hydromagnesite, zinc oxide, talc, silica... [Pg.621]

Typical concentration range generally >40 wt% calcium carbonate, calcinated kaolin, talc - 20-40 wt% carbon fiber 5-30% (depending on aspect ratio) " titanium dioxide - 1 wt% (occasionally concentrations of 10 wt% are found in thin sections) " ferromagnetic powder - up to 90 wt% " stainless steel fiber - 2-3 wt% " nickel fibers for magnetic properties -10-30% starch in biodegradable products - 4-8 wt% ... [Pg.646]

Paper Filling kaolins, titanium dioxide, talc, calcium carbonate, calcined clays, synthetic silicas and aluminas. [Pg.177]

Lime Soda. Process. Lime (CaO) reacts with a dilute (10—14%), hot (100°C) soda ash solution in a series of agitated tanks producing caustic and calcium carbonate. Although dilute alkaH solutions increase the conversion, the reaction does not go to completion and, in practice, only about 90% of the stoichiometric amount of lime is added. In this manner the lime is all converted to calcium carbonate and about 10% of the feed alkaH remains. The resulting slurry is sent to a clarifier where the calcium carbonate is removed, then washed to recover the residual alkaH. The clean calcium carbonate is then calcined to lime and recycled while the dilute caustic—soda ash solution is sent to evaporators and concentrated. The concentration process forces precipitation of the residual sodium carbonate from the caustic solution the ash is then removed by centrifugation and recycled. Caustic soda made by this process is comparable to the current electrolytic diaphragm ceU product. [Pg.527]

In addition to the principal equations discussed, several others occur which may be of importance, including calcination of calcium carbonate (limestone), which takes place in the upper shaft at 800—870°C,... [Pg.417]

Cementstone is an impure (usually argillaceous) limestone, possessing the ideal balance of siUca, alumina, and calcium carbonate for Portiand cement (qv) manufacture. When calcined it produces a hydrauHc cementing material. [Pg.163]

Rotary kilns and, to a lesser extent, Fluo-SoHds kilns are used to calcine a wet precipitated calcium carbonate filter cake in the kraft or sulfate paper-pulp process (15). Lime is regenerated for use as a causticization reagent in recovering caustic soda for pulp digestion. Losses in lime recovery are replaced by purchased lime (see Paper Pulp). [Pg.173]

Two types of magnesia, caustic-calcined and periclase (a refractory material), are derived from dolomitic lime. Lime is required in refining food-grade salt, citric acid, propjiene and ethylene oxides, and ethylene glycol, precipitated calcium carbonate, and organic salts, such as calcium stearate, lactate, caseinate. [Pg.178]

Bismuth trioxide forms numerous, complex, mixed oxides of varying composition when fused with CaO, SrO, BaO, and PbO. If high purity bismuth, lead, and copper oxides and strontium and calcium carbonates are mixed together with metal ratios Bi Pb Sn Ca Cu = 1.9 0.4 2 2 3 or 1.95 0.6 2 2 3 and calcined at 800—835°C, the resulting materials have the nominal composition Bi PbQ4Sr2Ca2Cu20 and Bi 25PbQgSr2Ca2Cu20 and become superconducting at about 110 K (25). [Pg.130]

Precipitated Calcium Carbonate. Precipitated calcium carbonate can be produced by several methods but only the carbonation process is commercially used in the United States. Limestone is calcined in a kiln to obtain carbon dioxide and quicklime. The quicklime is mixed with water to produce a milk-of-lime. Dry hydrated lime can also be used as a feedstock. Carbon dioxide gas is bubbled through the milk-of-lime in a reactor known as a carbonator. Gassing continues until the calcium hydroxide has been converted to the carbonate. The end point can be monitored chemically or by pH measurements. Reaction conditions determine the type of crystal, the size of particles, and the size distribution produced. [Pg.410]

When it is desirable to use a weak black, bone black may be substituted for carbon. It is manufactured by calcining animal bones and contains approximately 85% calcium phosphate and calcium carbonate. Black iron oxide (Fe O is stable up to 150°C. Copper chromite black (Cu(Cr02)2) is iuert to all but mbberlike compositions and has been calcined to 600°C. [Pg.458]

Mineral fillers are used for light-colored compounds. Talc has a small particle size and is a semireinforcing filler. It reduces air permeabihty and has htde effect on cure systems. Calcined clay is used for halobutyl stoppers in pharmaceutical appHcations. Nonreinforcing fillers, such as calcium carbonate and titanium dioxide, have large particle sizes and are added to reduce cost and viscosity. Hydrated siUcas give dry, stiff compounds, and their acidity reduces cure rate hence, their content should be minimized. [Pg.485]

Carbon blacks are usually used as fillers. The semi-reinforcing types, such as PEP (Past Extmsion Pumace) and SRE (Semi-Reinforcing Pumace) give the best performance (see Carbon, carbonblack). To lower the cost and improve the processibiUty of light compounds, or to lower the cost of black compounds, calcined clay or fine-particle calcium carbonate are used. [Pg.504]

At atmospheric pressure, calcium carbonate almost completely calcines to free lime, and it is this that captures the sulfur dioxide. As the free lime is not completely sulfated, the resulting sorbent ash is veiy alkaline, consisting primarily of CaS04 and CaO, with small amounts of CaCO,3. [Pg.2387]

Properties Commercial grades Uses Manufacture White to grayish-white solid. Reacts with water to form calcium hydroxide. Commercial lime is available in lump, pebble, ground, and pulverized forms. One of the oldest commercial chemicals. Used in hundreds of applications. The most important uses are for making steel and chemicals, water treatment, pollution control, pulp and paper, and construction. Limestone (calcium carbonate, CaCOj) from mines or quarries is heated in a kiln (calcined). [Pg.23]

Provided that the temperature and the carbon dioxide pressure conditions in the calcination furnace are such that they correspond to the point A, or to any point above the calcium carbonate line, no dissociation occurs because in such a situation,... [Pg.347]

Many powdered raw materials, e.g. china clay, talc and calcium carbonate are natural products, coming from the soil and often contaminated with appreciable numbers of bacterial and fungal spores. Products heated to high temperatures during preparation, e.g. calcined kaolin clay used as a titanium dioxide extender, will generally be free from such contaminants. [Pg.71]

Calcinating a mineral removes its volatile components, such as water or carbon dioxide and leaves an usually crumbly solid residue. Calcinated secondary minerals such as limestone are the basic components of building cements, and in extractive metallurgy operations they facilitate the smelting of metals. Calcinating limestone (composed of calcium carbonate), for example, drives away carbon dioxide, leaving a solid, friable residue of quicklime (composed of calcium oxide) ... [Pg.172]

Calcinating limestone (composed of calcium carbonate) removes its volatile component (carbon dioxide) and results in the formation of quicklime (composed of calcium oxide) (see Textbox 33). [Pg.174]

Calcium carbonate is obtained from natural limestone deposits. The purified compound, known as precipitated calcium carbonate, is synthesized from limestone. Limestone is calcined to calcium oxide and carbon dioxide in a kiln. The products are recombined after purification. Calcium oxide is hydrated... [Pg.159]

The Solvay process involves a series of partial reactions. The first step is calcination of calcium carbonate to form lime and CO2. Lime is converted to calcium hydroxide. The most crucial step of the process involves reacting brine solution with carbon dioxide and ammonia to produce sodium bicarbonate and ammonium chloride. Sodium bicarbonate converts to sodium carbonate. The calcium hydroxide and ammonium chloride react to form calcium chloride as the by-product. The partial reactions are shown below ... [Pg.862]


See other pages where Calcination calcium carbonate is mentioned: [Pg.283]    [Pg.490]    [Pg.465]    [Pg.200]    [Pg.283]    [Pg.490]    [Pg.465]    [Pg.200]    [Pg.63]    [Pg.239]    [Pg.253]    [Pg.163]    [Pg.392]    [Pg.505]    [Pg.194]    [Pg.429]    [Pg.347]    [Pg.348]    [Pg.348]    [Pg.489]    [Pg.171]    [Pg.575]    [Pg.576]    [Pg.453]    [Pg.538]    [Pg.150]    [Pg.124]   
See also in sourсe #XX -- [ Pg.516 ]




SEARCH



Calcinators

Calcine

Calcined

Calcined clay filler Calcium carbonate

Calciner

Calciners

Calcining

Calcium carbonate

Carbon calcination

Carbonates calcination

© 2024 chempedia.info