Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cables copper

The main function of metal deactivators (MD) is to retard efficiently metal-catalyzed oxidation of polymers. Polymer contact with metals occur widely, for example, when certain fillers, reinforcements, and pigments are added to polymers, and, more importantly when polymers, such as polyolefins and PVC, are used as insulation materials for copper wires and power cables (copper is a pro-oxidant since it accelerates the decomposition of hydroperoxides to free radicals, which initiate polymer oxidation). The deactivators are normally poly functional chelating compounds with ligands containing atoms like N, O, S, and P (e.g., see Table 1, AOs 33 and 34) that can chelate with metals and decrease their catalytic activity. Depending on their chemical structures, many metal deactivators also function by other antioxidant mechanisms, e.g., AO 33 contains the hindered phenol moiety and would also function as CB-D antioxidants. [Pg.91]

BSEN12166 Part 2 Zinc and zinc alloy coated non-alloy steel wire for armouring either power cables or telecommunication cables. Submarine cables. Copper and copper alloys. Wire for general purposes. [Pg.530]

Figure 6-17. Coaxial electrical cable s PS insulation buttons are here being injection molded, using a cold runner system, but it could also use a hot runner one. In this continuous production process, the injection-molding machine (IMM) is on a platform that moves in a rectangular pattern to permit the platens to open and move away from the buttons, as well as to move at the speed of the six-cable copper wire line when the mold is closed and the IMM is injecting the PS. Copper wires are started out with large diameters and are pulled through reduction squeeze rolls to their final thin diameter prior to entering the IMM. The wire-reduction line is to the left of the IMM, with the wire pullers to its left. Automatic devices remove the runners on-line just after they leave the IMM and the additional cooling station fiiat is shown in this view. Figure 6-17. Coaxial electrical cable s PS insulation buttons are here being injection molded, using a cold runner system, but it could also use a hot runner one. In this continuous production process, the injection-molding machine (IMM) is on a platform that moves in a rectangular pattern to permit the platens to open and move away from the buttons, as well as to move at the speed of the six-cable copper wire line when the mold is closed and the IMM is injecting the PS. Copper wires are started out with large diameters and are pulled through reduction squeeze rolls to their final thin diameter prior to entering the IMM. The wire-reduction line is to the left of the IMM, with the wire pullers to its left. Automatic devices remove the runners on-line just after they leave the IMM and the additional cooling station fiiat is shown in this view.
Exciting developments based on electromagnetic induction raced along from that time, giving us the sophisticated products our everyday lives depend on. During most of the period productive uses for eddy current technology were few and few people believed in it as a usefiil tool eddy currents caused power loss in electrical circuits and, due to the skin effect, currents flowed only in the outer surfaces of conductors when the user had paid for all the copper in the cable. The speedometer and the familiar household power meter are examples of everyday uses that we may tend to forget about. The brakes on some models of exercise bicycle are based on the same principle. [Pg.272]

Control and signal cables are made up of fine copper wire strands of plain electrolytic copper wire with PVC or EPR-based insulation and an outer jacket of special PVC or ethylene copolymers. [Pg.324]

Fig. 4. Submersible oil well pump cable. A, SoHd copper conductor B, EPR-based insulation C, chemical barrier D, lead sheath E, filler E, galvanised... Fig. 4. Submersible oil well pump cable. A, SoHd copper conductor B, EPR-based insulation C, chemical barrier D, lead sheath E, filler E, galvanised...
In the early 1990s, there were more than 9 x 10 km of fiber-optical telecommunication links in practical use in the United States. In addition, many other countries, notably Canada, Japan, and western Europe, have installed extensive fiber-optic communication systems. There are several transoceanic fiber-based telephone cables. Fibers are in use for intracity telephone links, where bulky copper [7440-50-8] wine is replaced by thin optical fibers. This allows crowded conduits in large cities to carry more messages than if copper wine were used. Fiber optics are used for intercity long-haul telephone links, for interoffice tmnk lines, and have replaced many microwave communication links. [Pg.16]

Only lead alloys containing copper below 0.08% have practical appHcations. Lead sheet, pipe, cable sheathing, wine, and fabricated products are produced from lead—copper alloys having copper contents near the eutectic composition. Lead—copper alloys in the range 0.03—0.08 wt % copper are covered by many specifications ASTM B29-92 (7), QQL 171 (United States), BS 334, HP2 Type 11 (Canada), DIN 1719 (Germany), and AS 1812 (Austraha). [Pg.60]

Lead—copper alloys are the primary material used in the continuous extmsion of cable coverings for the electrical power cable industry in the United States. Other alloys, containing tin and arsenic as well as copper, have also been developed for cable sheathing in the United States to provide higher fatigue strength. [Pg.60]

Bonding Agents. These materials are generally only used in wire cable coat compounds. They are basically organic complexes of cobalt and cobalt—boron. In wire coat compounds they are used at very low levels of active cobalt to aid in the copper sulfide complex formation that is the primary adherance stmcture. The copper sulfide stmcture builds up at the brass mbber interface through copper in the brass and sulfur from the compound. The dendrites of copper sulfide formed entrap the polymer chains before the compound is vulcanized thus hoi ding the mbber firmly to the wire. [Pg.251]

Electrical Connections. Electric current is brought from the transformers by air-cooled copper busbars and close to the electrode by water-cooled bus tubes and flexible cables, connecting to water-cooled copper contact plates at the electrode. The plates are held against the electrode by hydraulic pressure. The connectors are as short and as balanced as possible to allow cancelling of magnetic fields associated with individual conductors. [Pg.460]

RTDs) for 6 sets of copper conductor cables (2 cores for each set)... [Pg.308]

Note Wherever a cable lead connecting the above devices (such as for RTDs) has to pass through a magnetic field, it may be screened with tinned copper-braided wires to nullify the effect of stray fields. The field may distort the readings. [Pg.308]

Table 13.15 Current rating and technical data for 1100 V, single-core flexible, PVC insulated copper conductor cables for control and power wiring... Table 13.15 Current rating and technical data for 1100 V, single-core flexible, PVC insulated copper conductor cables for control and power wiring...
A) 1 For busbars and busbar connections of aluminium or copper 2 For busbars and busbar connections of aluminium or copper silver plated or equivalent 3 Terminals for external insulated cables 50 65 70 90 105 110... [Pg.427]

They are copper conductor cables to save from breakages... [Pg.533]

We have reproduced in a few Tables (AI6.3-AI6.15) for cables that are used more com-nionly in all voltage ratings and with aluminium conductors. For other cables and copper conductor cables, refer to the manufacturers of their catalogues. [Pg.544]

Test on a single small vertical insulated copper wire nr cable BS 4066 2/1995... [Pg.549]

The ground conductor can be of aluminium, GI or copper, as discussed earlier. A humid or a chemically contaminated location is corroding in nature. Aluminium has a rapid reaction and is fast corroding. At such locations, use of GI or copper conductor would be more appropriate. Table 22.4 suggests the ground conductor sizes for aluminium conductor power cable.s for small and medium-ratine feeders when aluminium is used for the ground... [Pg.702]

Copper is a galvanic metal and causes corrosion, in the presence of moisture, in nearby metals, such as cable sheathes, steel structure and water, gas or drain pipes, buried in its vicinity. With all such metafs. it forms a complete electrolytic circuit and corrodes them. Tinning may give protection against its galvanic effects but this is ati expensive proposition... [Pg.702]

By providing 12 turns of 150 mm mean diameter of the 50 mm flexible copper cable connecting each 60 kVAr capacitor bank a self-inductance of roughly 42.93 x 10 H can be introduced into each switching circuit, which will limit the switching inrush current to almost the permissible value of the making current (/, ) of the switching device. [Pg.758]


See other pages where Cables copper is mentioned: [Pg.45]    [Pg.198]    [Pg.45]    [Pg.198]    [Pg.157]    [Pg.249]    [Pg.120]    [Pg.313]    [Pg.323]    [Pg.324]    [Pg.329]    [Pg.53]    [Pg.57]    [Pg.58]    [Pg.61]    [Pg.138]    [Pg.250]    [Pg.146]    [Pg.169]    [Pg.335]    [Pg.28]    [Pg.30]    [Pg.31]    [Pg.44]    [Pg.121]    [Pg.339]    [Pg.537]    [Pg.739]    [Pg.739]    [Pg.758]    [Pg.758]   
See also in sourсe #XX -- [ Pg.537 ]




SEARCH



Cables

Cables, electrical copper/aluminum

Copper cable current rating

Copper wire cables

© 2024 chempedia.info