Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bulk polymorphs

A significant advantage of the PLM is in the differentiation and recognition of various forms of the same chemical substance polymorphic forms, eg, brookite, mtile, and anatase, three forms of titanium dioxide calcite, aragonite and vaterite, all forms of calcium carbonate Eorms I, II, III, and IV of HMX (a high explosive), etc. This is an important appHcation because most elements and compounds possess different crystal forms with very different physical properties. PLM is the only instmment mandated by the U.S. Environmental Protection Agency (EPA) for the detection and identification of the six forms of asbestos (qv) and other fibers in bulk samples. [Pg.333]

Numerous theoretical and experimental studies have dealt with the properties of rutile (see 3 and references therein), while the other polymorphs have attracted less attention. This is due to the fact that rutile is easier to grow and characterize, and has a simpler structure that can be readily investigated using a variety of theoretical techniques. The fact that the experimentally reported bulk modulus of anatase is in the range from 59 GPa to 360 GPa illustrates the need for further studies of titanium dioxide polymorphs. [Pg.19]

The detailed first principles study of the three stable polymorphs has been performed recently using the LCAO technique The main drawback of that work is that no cell optimization was performed for anatase or brookite. The energy-volume curves that were used to calculate the bulk modulus, B, and its pressure derivative, B, have been produced by varying the volume with the c/a ratio and fractional atomic coor nates being fixed at experimental values which makes results unreliable. [Pg.20]

It is also well known that different polymorphic forms can present largely different crystallite moduli along the chain axis (both observed and calculated). These differences can be large if large variations in the chain conformations are involved, and can have a significant influence on the bulk properties... [Pg.212]

Mercuric sulfide (HgS) is dimorphic. The more common form, cinnabar (red a-form), has a distorted RS, trigonal structure which is unique among the monosulfides, for the crystal is built of helical chains in which Hg has two nearest neighbors at 2.36 A, two more at 3.10 A, and two at 3.30 A. Bulk a-HgS is a large-gap semiconductor (2.1 eV), transparent in the red and near IR bands. The rare, black mineral metacinnabarite is the 3-HgS polymorph with a ZB structure, in which Hg forms tetrahedral bonds. Upon heating, 3-HgS is converted to the stable a-form. The ZB structure of HgS is stabilized under a few percent admixture of transition metals, which replace Hg ions in the lattice. [Pg.46]

As might be expected, the literature associated with studies of polymorphism and solvatomorphism has grown in proportion to the interest in the field. As a result, an annual review of the area has been initiated, and will be continued in succeeding volumes in the Profiles series. The citations in this article are drawn primarily from the major pharmaceutical and crystallographic journals, and therefore are not represented to be comprehensive. However, they should represent the bulk of work that was conducted with pharmaceutical interest in mind. [Pg.264]

Crystallization remains the primary means of controlling the polymorphic or solva-tomorphic state of a compound, and various groups have examined the influences of processing parameters on the identity and quality of the isolated form. Seeding was used to reduce the size of the metastable zone of eflucimibe, and thereby control the identity of the desired polymorphic identity of the product through a reduction in concomitant crystallization [16], Process improvements have been developed that were found to improve the filterability and enhance the bulk density of ranitidine Form-1 [17], while the variation of process parameters used in an oscillatory baffled crystallizer enabled better selection to be made between the metastable a- and /i-forms of (z.)-glutamic acid [18]. [Pg.266]

The structures of two polymorphs of pleconaril, enantiotropically related with a transition temperature of 35.7°C, have been reported [36], Form I was described as consisting of a network of dimers, while Form III was described as a three-dimensional network of monomers. The two forms contradicted the density rule, and the solid solid transition could occur only through a destructive-reconstructive mechanism. A quantitative differential scanning calorimetry method was also described that enabled the quantitative determination of Form I in bulk Form III to be made at levels as low as 0.1%. [Pg.268]

The topics of polymorphism and pseudopolymorphism dominate the majority of publications that deal with utilizing infrared spectroscopy for the physical characterization of pharmaceutical solids. Typically, in each of the publications, IR spectroscopy is only one technique used to characterize the various physical forms. It is important to realize that a multidisciplinary approach must be taken for the complete physical characterization of a pharmaceutical solid. Besides polymorphism, mid- and near-IR have been utilized for identity testing at the bulk and formulated product level, contaminant analysis, and drug-excipient interactions. A number of these applications will be highlighted within the next few sections. [Pg.72]

Beside mid-IR, near-IR spectroscopy has been used to quantitate polymorphs at the bulk and dosage product level. For SC-25469 [34], two polymorphic forms were discovered (a and /3), and the /3-form was selected for use in the solid dosage form. Since the /3-form can be transformed to the a-form under pressure by enantiotropy, quantitation of the /3-form in the solid dosage formulation was necessary. Standard mixtures of both forms in the formulation matrix were prepared, and spectra were measured in the near-IR via diffuse reflectance. Utilizing a standard, near-IR multiple linear regression, statistical approach, the a- and /3-forms could be predicted to within 1% of theoretical. This extension of the diffuse reflectance IR technique shows that quantitation of polymorphic forms at the bulk and/or dosage product level can be performed. [Pg.74]

Qualitative characterization techniques are outlined as well as the development of quantitative methods for the determination of one polymorphic form in another at the bulk or dosage product level. [Pg.95]

Bulk drug 13C, 31P, 1SN, 25Mg, 23Na Solid state structure elucidation, drug-excipient interaction studies (variable temperature), (pseudo)polymorphic characterization at the qualitative and quantitative level, investigation of hydrogen bonding with salt compounds... [Pg.111]

Due to recent developments in synthesis, the preparation of nanocrystalline polymorphs, which are usually unstable as bulk phases, has been achieved for several materials such as ZrC>2, Ti02 and various perovskites. The appearance of these exotic materials does not necessarily mean that they are thermodynamically stable, since the kinetics (templates and surfactants) are probably more important for the processes than the thermodynamics. Adsorption of water may also play an important role as in the case of alumina, but in the data given in Figure 6.19 the effect of water has been accounted for [25]. [Pg.186]

Both thermodynamic and kinetic factors need to be considered. Take, for instance, acetic acid. The liquid contains mostly dimer but the crystal contains the catemer and no (polymorphic) dimer crystal has ever been obtained. Various computations (R. S. Payne, R. J. Roberts, R. C. Rowe, R. Docherty, Generation of crystal structures of acetic acid and its halogenated analogs , J. Comput. Chem, 1998, 19,1-20 W. T. M. Mooij, B. P. van Eijck, S. L. Price, P. Verwer, J. Kroon, Crystal structure predictions for acetic acid , J. Comput. Chem., 1998, 19, 459-474) show the relative stability of the dimer. Perhaps the dimer is not formed in the crystal because it is 0-dimensional and as such, not able to propagate so easily to the bulk crystal as say, the 1-dimensional catemer. [Pg.306]

Another example of a well-designed method for the quantitative XRPD determination of polymorphs was developed for the phase analysis of prazosin hydrochloride [49]. As an example of an XRPD method for the determination of solvatomorphs, during the quantitation of cefepine dihydrochloride dihydrate in bulk samples of cefepine dihydrochloride monohydrate, a limit of detection of 0.75% w/w and a limit of quantitation of 2.5% w/w were associated with a working range of 2.5-15% w/w [50],... [Pg.215]

Chemburkar, S. R., et. al., 2000, Dealing with the Impact of Ritonavir Polymorphs on the Late Stages of Bulk Drug Process Development, Organic Process R D, 4, 413-417. [Pg.81]

This is not a trivial problem, and has important implications for the mechanism of the reaction. However, the bulk of the evidence is for centrosymmetric rings, which would be in keeping with our experience in small-molecule systems. For the present purposes we assume this to be the case. On this basis DSP is one of a class of monomers of crystal structural type 100 that polymerize to polymers 101. Note that, as is typical of topochemical reactions, there are cases of polymorphism of the monomers, in which only those of structure 100 are reactive. Also small changes in the substitution of this molecule frequently result in changes in crystal structure and reactivity. [Pg.178]

Experimental tilt angles have usually an accuracy of at best 3°, leading to an error of about 0.1 A in cell axes. The calculated third cell axis will show a higher deviation. If possible an internal standard should be used for calibration purposes but a higher accuracy will be obtained with a Pawley fit (e.g. fit forP CuPc in Fig. 6) from x-ray powder diffraction data [11]. Especially for packing energy minimization used for simulation methods it is essential to determine the cell parameters as precise as possible. In the case of polymorphism, it is essential to use x-ray powder diffraction to ensure that bulk and investigated nano crystals represent the same modifications. [Pg.414]

The rate at which a compound dissolves is dependent upon its surface area, solubility, solution concentration, rate of reaction and transport rate. These quantities are defined as follows surface area - the surface area of the individual particles if the compound is not compressed or the surface area of a disk if the compound is compressed solubility - the solubility of the polymorphic form in the solid phase solution concentration - the concentration of the compound in the bulk of the solution rate of reaction - the rate at which the solid surface reacts with the solvent or dissolution medium transport rate - the rate at which the compound travels through the diffusion layer. The rate of dissolution, or flux, of a compound can be given as ... [Pg.86]

Solidification of the particles may not be the final step in the formation process of solid lipid particles. Lipidic materials exhibit rich polymorphism [69,70], which may also occur in the dispersed state. In nanoparticles, the polymorphic behavior of the matrix lipids may, however, differ distinctly from that in the bulk material. Polymorphic transitions are usually accelerated in the nanoparticles compared with the bulk lipids [2,62]. In some cases, polymorphic forms not observable in the corresponding bulk materials were detected in lipid nanoparticles [1,65]. Because polymorphism can affect pharmaceutically relevant properties of the particles, such as the drug incorporation capacity [65], corresponding investigations should also be included in the characterization process. As long as polymorphic or other crystalaging phenomena have not terminated, the particle matrix cannot be regarded as static, and alterations of the particle properties may still occur. [Pg.8]


See other pages where Bulk polymorphs is mentioned: [Pg.185]    [Pg.44]    [Pg.2312]    [Pg.185]    [Pg.44]    [Pg.2312]    [Pg.326]    [Pg.338]    [Pg.85]    [Pg.20]    [Pg.150]    [Pg.420]    [Pg.420]    [Pg.60]    [Pg.78]    [Pg.94]    [Pg.111]    [Pg.113]    [Pg.99]    [Pg.30]    [Pg.292]    [Pg.122]    [Pg.213]    [Pg.92]    [Pg.411]    [Pg.228]    [Pg.175]    [Pg.176]    [Pg.249]    [Pg.323]    [Pg.278]    [Pg.193]    [Pg.46]    [Pg.2]   


SEARCH



Bulk fats polymorphism

Crystallization of Pure Bulk with Polymorphism

© 2024 chempedia.info