Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Boron trifluoride, reaction

Selectivity in formation of protective groups may also be achieved by a proper choice of reaction conditions and catalyst. Thus formation of the 3-monothioketal from 3,6-diketones is achieved by dilution of the ethane-dithiol-boron trifluoride reaction mixture with acetic acid. 3-Monocyanohydrins are obtained in good yield from 3,20-diketo-(5a)-pregnanes by diluting the exchange reaction with ethanol. Similarly, dilution of the... [Pg.378]

Miscellaneous.—The 2-hydroxymethylene-ketone (310) forms a reasonably stable crystalline mesomeric complex (311) by reaction with boron trifluoride. Reaction of the complex with methyl-lithium, followed by acid, gave the 2-ethylidene-ketone (312), though in low yield. [Pg.289]

In each case the configuration around the boron changes from trigonal planar to tetrahedral on adduct formation. Because of this ability to form additional compounds, boron trifluoride is an important catalyst and is used in many organic reactions, notably polymerisation, esterification, and Friedel-Crafts acylation and alkylations. [Pg.154]

Other catalysts which may be used in the Friedel - Crafts alkylation reaction include ferric chloride, antimony pentachloride, zirconium tetrachloride, boron trifluoride, zinc chloride and hydrogen fluoride but these are generally not so effective in academic laboratories. The alkylating agents include alkyl halides, alcohols and olefines. [Pg.509]

The controlled thermal decomposition of dry aromatic diazonium fluoborates to yield an aromatic fluoride, boron trifluoride and nitrogen is known as the Schiemann reaction. Most diazonium fluoborates have definite decomposition temperatures and the rates of decomposition, with few exceptions, are easily controlled. Another procedure for preparing the diazonium fluoborate is to diazotise in the presence of the fluoborate ion. Fluoboric acid may be the only acid present, thus acting as acid and source of fluoborate ion. The insoluble fluoborate separates as it is formed side reactions, such as phenol formation and coupling, are held at a minimum temperature control is not usually critical and the temperature may rise to about 20° without ill effect efficient stirring is, however, necessary since a continuously thickening precipitate is formed as the reaction proceeds. The modified procedure is illustrated by the preparation of -fluoroanisole ... [Pg.594]

A mixture of an acid anhydride and a ketone is saturated with boron trifluoride this is followed by treatment with aqueous sodium acetate. The quantity of boron trifluoride absorbed usually amounts to 100 mol per cent, (based on total mola of ketone and anhydride). Catalytic amounts of the reagent do not give satisfactory results. This is in line with the observation that the p diketone is produced in the reaction mixture as the boron difluoride complex, some of which have been isolated. A reasonable mechanism of the reaction postulates the conversion of the anhydride into a carbonium ion, such as (I) the ketone into an enol type of complex, such as (II) followed by condensation of (I) and (II) to yield the boron difluoride complex of the p diketone (III) ... [Pg.861]

Boron trifluoride method. Fit a 1 litre three-necked flask with a gas inlet tube, a gas outlet leading to an alkali trap (compare Fig. 11,8, laori for the unabsorbed boron trifluoride), and stopper the third neck. Place 68 g. (73 ml.) of pure, anhydrous acetone (1) and 255 g. (236 ml.) of A.R. acetic anhydride in the flask and cool in a freezing mixture of ice and salt. Connect the gas inlet tube through an empty wash bottle to a cylinder of commercial boron trifluoride (2), and bubble the gas through the reaction mixture at such a rate that 250 g. is absorb in about 5 hours (2 bubbles per second). Pour the reaction mixture into a solution... [Pg.862]

Concerning my research during my Dow years, as I discuss iu Chapter 4, my search for cationic carbon intermediates started back in Hungary, while 1 was studying Friedel-Crafts-type reactions with acyl and subsequently alkyl fluorides catalyzed by boron trifluoride. In the course of these studies I observed (and, in some cases, isolated) intermediate complexes of either donor-acceptor or ionic nature. [Pg.72]

When mixed with Lewis acids, dinitrogen pentoxide yields crystalline white solids, which were identified as the corresponding nitronium salts by their infra-red spectra. The reaction with boron trifluoride can be formulated in the following way... [Pg.51]

From these results it appears that the 5-position of thiazole is two to three more reactive than the 4-position, that methylation in the 2-position enhances the rate of nitration by a factor of 15 in the 5-position and of 8 in the 4-position, that this last factor is 10 and 14 for 2-Et and 2-t-Bu groups, respectively. Asato (374) and Dou (375) arrived at the same figure for the orientation of the nitration of 2-methyl and 2-propylthiazole Asato used nitronium fluoroborate and the dinitrogen tetroxide-boron trifluoride complex at room temperature, and Dou used sulfonitric acid at 70°C (Table T54). About the same proportion of 4-and 5-isomers was obtained in the nitration of 2-methoxythiazole by Friedmann (376). Recently, Katritzky et al. (377) presented the first kinetic studies of electrophilic substitution in thiazoles the nitration of thiazoles and thiazolones (Table 1-55). The reaction was followed spec-trophotometrically and performed at different acidities by varying the... [Pg.104]

Boron trifluoride [7637-07-2] (trifluoroborane), BF, was first reported in 1809 by Gay-Lussac and Thenard (1) who prepared it by the reaction of boric acid and fluorspar at duU red heat. It is a colorless gas when dry, but fumes in the presence of moisture yielding a dense white smoke of irritating, pungent odor. It is widely used as an acid catalyst (2) for many types of organic reactions, especially for the production of polymer and petroleum (qv) products. The gas was first produced commercially in 1936 by the Harshaw Chemical Co. (see also Boron COMPOUNDS). [Pg.159]

Chemical Properties. In addition to the reactions Hsted in Table 3, boron trifluoride reacts with alkali or alkaline-earth metal oxides, as well as other inorganic alkaline materials, at 450°C to yield the trimer trifluoroboroxine [13703-95-2] (BOF), MBF, and MF (29) where M is a univalent metal ion. The trimer is stable below — 135°C but disproportionates to B2O2 and BF at higher temperatures (30). [Pg.160]

Manufacture. Boron trifluoride is prepared by the reaction of a boron-containing material and a fluorine-containing substance in the presence of an acid. The traditional method used borax, fluorspar, and sulfuric acid. [Pg.161]

Numerous other reactions are available for the preparation of small quantities of boron trifluoride, some of which are of high purity (55). [Pg.161]

Boron trifluoride catalyst may be recovered by distillation, chemical reactions, or a combination of these methods. Ammonia or amines are frequently added to the spent catalyst to form stable coordination compounds that can be separated from the reaction products. Subsequent treatment with sulfuric acid releases boron trifluoride. An organic compound may be added that forms an adduct more stable than that formed by the desired product and boron trifluoride. In another procedure, a fluoride is added to the reaction products to precipitate the boron trifluoride which is then released by heating. Selective solvents may also be employed in recovery procedures (see Catalysts,regeneration). [Pg.162]

Boron trifluoride is used for the preparation of boranes (see Boron compounds). Diborane is obtained from reaction with alkafl metal hydrides organoboranes are obtained with a suitable Grignard reagent. [Pg.162]

The Balz-Schiemaim reaction is a useful laboratory and industrial method for the preparation of fluoroaromatics. The water-insoluble diazonium fluoroborate is filtered, dried, and thermally decomposed to give the aryl fluoride, nitrogen, and boron trifluoride (28—30). [Pg.318]

Sulfonation of aromatic hydrocarbons with sulfuric acid is cataly2ed by hydrogen fluoride or, at lower temperatures, by boron trifluoride (144). The products obtained are more uniform and considerably less sulfuric acid is needed, probably because BF forms complexes with the water formed ia the reaction, and thus prevents dilution of the sulfuric acid. [Pg.560]

Olefins are carbonylated in concentrated sulfuric acid at moderate temperatures (0—40°C) and low pressures with formic acid, which serves as the source of carbon monoxide (Koch-Haaf reaction) (187). Liquid hydrogen fluoride, preferably in the presence of boron trifluoride, is an equally good catalyst and solvent system (see Carboxylic acids). [Pg.563]

Polymer-type antioxidants have been prepared by Eriedel-Crafts reaction of -cresol andp- and/or y -chloromethylstyrene in the presence of boron trifluoride-etherate (198). The oligomeric product resulting from the alkylation of phenyl-a-naphthylamine using C12—15 propylene oligomer in the presence of AlCl or activated white clays is used as an antioxidant additive for lubricating oils (199). [Pg.563]

As a dibasic acid, malic acid forms the usual salts, esters, amides, and acyl chlorides. Monoesters can be prepared easily by refluxing malic acid, an alcohol, and boron trifluoride as a catalyst (9). With polyhydric alcohols and polycarboxyUc aromatic acids, malic acid yields alkyd polyester resins (10) (see Alcohols, polyhydric Alkyd resins). Complete esterification results from the reaction of the diester of maUc acid with an acid chloride, eg, acetyl or stearoyl chloride (11). [Pg.521]

The reaction of 2-methyla2iridine with boron trichloride [10294-34-5] lea.ds to replacement of all three chlorides by ayiridine rings to form tri(methylethyleneimine) boron [17862-61-2] (152). The reaction of boron trifluoride [7637-07-2] with ethyleneimine at — 78°C proceeds via substitution and subsequent ring opening to yield A/-P-fluoroethyl-fl-difluorobora2ene (153). [Pg.6]

Primary nitroparaffins react with two moles of formaldehyde and two moles of amines to yield 2-nitro-l,3-propanediamines. With excess formaldehyde, Mannich bases from primary nitroparaffins and primary amines can react further to give nitro-substituted cycHc derivatives, such as tetrahydro-l,3-oxa2iaes or hexahydropyrimidines (38,39). Pyrolysis of salts of Mannich bases, particularly of the boron trifluoride complex (40), yields nitro olefins by loss of the amine moiety. Closely related to the Mannich reaction is the formation of sodium 2-nitrobutane-1-sulfonate [76794-27-9] by warming 1-nitropropane with formaldehyde and sodium sulfite (41). [Pg.100]

Diphenylamine can also be produced by passing the vapors of aniline over a catalyst such as alumina, or alumina impregnated with ammonium fluoride (17). The reaction is carried out at 480°C and about 700 kPa (7 atm). Conversion per pass, expressed as parts diphenylamine per 100 parts of reactor effluent, is low (18—22%), and the unconverted aniline must be recycled. Other catalysts disclosed for the vapor-phase process are alumina modified with boron trifluoride (18), and alumina activated with boric acid or boric anhydride (19). [Pg.229]

The first synthesis of sorbic acid was from crotonaldehyde [4170-30-3] and malonic acid [141-82-2] in pyridine in 32% yield (2,17,18)- The yield can be improved with the use of malonic acid salts (19). One of the first commercial methods involved the reaction of ketene and crotonaldehyde in the presence of boron trifluoride in ether at 0°C (20,21). A P-lactone (4) forms and then reacts with acid, giving a 70% yield. [Pg.283]

Lewis Acid Complexes. Sulfolane complexes with Lewis acids, such as boron trifluoride or phosphoms pentafluoride (17). For example, at room temperature, sulfolane and boron trifluoride combine in a 1 1 mole ratio with the evolution of heat to give a white, hygroscopic soHd which melts at 37°C. The reaction of sulfolane with methyl fluoride and antimony pentafluoride inhquid sulfur dioxide gives crystalline tetrahydro-l-methoxythiophenium-l-oxidehexafluoroantimonate, the first example of an alkoxysulfoxonium salt (18). [Pg.69]

Coumarone—Indene Kesins. These should be called polyindene resins (17) (see Hydrocarbon resins). They are derived from a close-cut fraction of a coke-oven naphtha free of tar acids and bases. This feedstock, distilling between 178 and 190°C and containing a minimum of 30% indene, is warmed to 35°C and polymeri2ed by a dding 0.7—0.8% of the phenol or acetic acid complex of boron trifluoride as catalyst. With the phenol complex, tar acids need not be completely removed and the yield is better. The reaction is exothermic and the temperature is kept below 120°C. When the reaction is complete, the catalyst is decomposed by using a hot concentrated solution of sodium carbonate. Unreacted naphtha is removed, first with Hve steam and then by vacuum distillation to leave an amber-colored resin. It is poured into trays, allowed to cool, and broken up for sale. [Pg.339]

Although all four tocopherols have been synthesized as their all-rac forms, the commercially significant form of tocopherol is i7//-n7i a-tocopheryl acetate. The commercial processes ia use are based on the work reported by several groups ia 1938 (15—17). These processes utilize a Friedel-Crafts-type condensation of 2,3,5-trimethylhydroquinone with either phytol (16), a phytyl haUde (7,16,17), or phytadiene (7). The principal synthesis (Fig. 3) ia current commercial use iavolves condensation of 2,3,5-trimethylhydroquiQone (13) with synthetic isophytol (14) ia an iaert solvent, such as benzene or hexane, with an acid catalyst, such as ziac chloride, boron trifluoride, or orthoboric acid/oxaUc acid (7,8,18) to give the all-rac-acetate ester (15b) by reaction with acetic anhydride. Purification of tocopheryl acetate is readily accompHshed by high vacuum molecular distillation and rectification (<1 mm Hg) to achieve the required USP standard. [Pg.146]

Preparation. Hexagonal boron nitride can be prepared by heating boric oxide with ammonia, or by heating boric oxide, boric acid, or its salts with ammonium chloride, alkaU cyanides, or calcium cyanamide at atmospheric pressure. Elemental nitrogen does not react with boric oxide even in the presence of carbon, though it does react with elemental boron at high temperatures. Boron nitride obtained from the reaction of boron trichloride or boron trifluoride with ammonia is easily purified. [Pg.220]


See other pages where Boron trifluoride, reaction is mentioned: [Pg.517]    [Pg.664]    [Pg.306]    [Pg.33]    [Pg.169]    [Pg.517]    [Pg.664]    [Pg.306]    [Pg.33]    [Pg.169]    [Pg.163]    [Pg.610]    [Pg.864]    [Pg.58]    [Pg.103]    [Pg.58]    [Pg.232]    [Pg.160]    [Pg.194]    [Pg.293]    [Pg.326]    [Pg.352]    [Pg.122]    [Pg.438]    [Pg.222]   
See also in sourсe #XX -- [ Pg.75 ]




SEARCH



Aldol reactions boron trifluoride etherate

Aldol-type reactions Boron trifluoride etherate

Ammonia reaction with boron trifluoride

Boron Trifluoride Etherate addition reactions

Boron Trifluoride Etherate condensation reactions

Boron trifluoride

Boron trifluoride Diels-Alder reaction catalysts

Boron trifluoride Diels-Alder reactions

Boron trifluoride Friedel-Crafts reactions

Boron trifluoride allylsilane reactions

Boron trifluoride allylsilane reactions with acetals

Boron trifluoride allylstannane reactions with aldehydes

Boron trifluoride etherate, reaction

Boron trifluoride organocuprate reactions

Boron trifluoride organolithium reactions

Boron trifluoride reaction with

Boron trifluoride reaction with allylsilanes, diastereoselectivity

Boron trifluoride reaction with diethyl ether

Boron trifluoride reactions with hydrides

Boron trifluoride reactions with organocopper compounds

Boronation reaction

Diels-Alder reactions boron trifluoride etherate

Epichlorohydrin reaction with boron trifluoride ether

Epichlorohydrin reaction with boron trifluoride etherate to form triethyloxonium fluoborate

Friedel-Crafts reactions boron trifluoride etherate

Reactions Boron

Reactions trifluoride

© 2024 chempedia.info