Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Boron structures with

B13P2 The crystal structure of B13P2 has determined to be the a-rhombohedral boron structure with two phosphorus atoms (partly replaced hy boron) in a unit cell from x-ray diffraction. Maeda et al. [24] measured P 3p DOS of B13P2 hy 7 Kp K-M2,z) x-ray emission spectroscopy. They also calculated the P Zp DOS using three... [Pg.339]

In all boron three-dimensional (3D) structures, most of the atoms are members of the almost regular atomic triangles and form 6 bonds (five intra- and one inter-icosahedral bonds). This circumstance leads to the possibility to synthesize bare boron structures with triangular two-dimensional (2D) lattices, e.g., nanotubular boron in the form of cylindrically rolled fiat or buckling surfaces (Boustani et al. 1999). [Pg.44]

Electroanalytical innovation and development of novel sensor electrodes are often driven by progress in materials chemistry. In particular for boron-based structures and assemblies the detection of saccharides plays a very prominent role. Monomeric as well as polymeric borate and boronic esters are reactive towards diols and lead to novel electroanalytical tools as well as new signal amplification strategies. There are many new opportunities arising and this overview will cover some of the recent developments in solid state, surface, and molecular boron structures with application in electroanalysis. [Pg.238]

The thermodynamically most stable polymorph of boron is the /3-rhombohedral modification which has a much more complex structure with 105 B atoms in the unit cell (no 1014.5 pm, a 65.28°). The basic unit can be thought of as a central Bn icosahedron surrounded by an icosahedron of icosahedra this can be visualized as 12 of the B7 units in Fig. 6.1b arranged so that the apex atoms form the central Bn surrounded by 12 radially disposed pentagonal dishes to give the Bg4 unit shown in Fig. 6.3a. The 12 half-icosahedra are then completed by means of 2 complicated Bjo subunits per unit cell,... [Pg.143]

Semiconductor properties are imparted by doping its structure with boron, phosphorus, or arsenic atoms. Silicon is relatively inert chemically but is attacked by halogens and dilute alkalies. It has good optical transmission especially in the infra-red. [Pg.220]

Boron carbide is a non-metallic covalent material with the theoretical stoichiometric formula, B4C. Stoichiometry, however, is rarely achieved and the compound is usually boron rich. It has a rhombohedral structure with a low density and a high melting point. It is extremely hard and has excellent nuclear properties. Its characteristics are summarized in Table 9.2. [Pg.234]

Boron implant with laser anneal. Boron atoms are accelerated into the backside of the CCD, replacing about 1 of 10,000 silicon atoms with a boron atom. The boron atoms create a net negative charge that push photoelectrons to the front surface. However, the boron implant creates defects in the lattice structure, so a laser is used to melt a thin layer (100 nm) of the silicon. As the silicon resolidihes, the crystal structure returns with some boron atoms in place of silicon atoms. This works well, except for blue/UV photons whose penetration depth is shorter than the depth of the boron implant. Variations in implant depth cause spatial QE variations, which can be seen in narrow bandpass, blue/UV, flat fields. This process is used by E2V, MIT/LL and Samoff. [Pg.140]

So far, only for the first two of the six ligand types outlined in Fig. 10 have oligomeric structures with boron been reported. This may be in part due to the relatively small number of publications related to this field and the fact that a systematic attempt to prepare boron macrocycles with these ligands has not been realized so far. [Pg.13]

Boron Compounds with Cage-Like Structures... [Pg.23]

Structure and Bonding in Boron-Containing Macrocycles and Cages - Comparison to Related Structures with Other Elements Including Organic Molecules... [Pg.180]

Among metal borides of the formula MjM B or (Mj, M/r)2B, the competing structural units are (a) the antiprism and (b) the trigonal metal prism. In many cases the CUAI2 structure with BMg-antiprismatic B coordination is adopted in close resemblance to transition-metal silicides, but no boron-carbon substitution is ob-served - " . [Pg.167]

The cubic UB, 2-type boride structure with space group Fm3m can be described on the basis of a B,2-cubooctahedron (see Fig. 1) . The association of the B,2-poly-hedra by oriented B—B bonds gives rise to a three-dimensional skeleton with boron cages. Formally, the arrangement of the B,2-units and of the metals atoms is of the NaCl-type. Each metal is located in the center of a B24-cubooctahedron. [Pg.228]

The materials for solid solutions of transition elements in j3-rh boron are prepared by arc melting the component elements or by solid-state diffusion of the metal into /3-rhombohedral (/3-rh) boron. Compositions as determined by erystal structure and electron microprobe analyses together with the unit cell dimensions are given in Table 1. The volume of the unit cell (V ) increases when the solid solution is formed. As illustrated in Fig. 1, V increases nearly linearly with metal content for the solid solution of Cu in /3-rh boron. In addition to the elements listed in Table 1, the expansion of the unit cell exceeds 7.0 X 10 pm for saturated solid solutions " of Ti, V, (2o, Ni, As, Se and Hf in /3-rh boron, whereas the increase is smaller for the remaining elements. The solubility of these elements does not exceed a few tenths at %. The microhardness of the solid solution increases with V . Boron is a brittle material, indicating the accommodation of transition-element atoms in the -rh boron structure is associated with an increase in the cohesion energy of the solid. [Pg.250]

Nuclear y-ray resonance spectra of solid solutions of Fe and Co in /3-rh boron give inconclusive results, although the large isomer shifts as compared to Fe metal indicate that the accommodation of Fe atoms in the boron structure is associated with changes in the electronic state. The magnitudes of the shifts are... [Pg.250]

Other single-crystal x-ray diffraction studies of transition element dopants in jS-rh boron are based on the results of a refinement of the /3-rh boron structure that establishes the occurrence of four new low-occupancy (3.7, 6.6, 6.8 and 8.5%) B positions in addition to the earlier known ones. The dopant elements studied, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Hf and Ta, do not enter B positions in the framework, but they enter the Al, A2, D and E positions. In some cases the doping elements have been studied at several concentrations for each element and for different cooling rates. The percentage occupancies of certain positions are eorrelated with the atomie sizes of the dopants. The bond distances between the polyhedra are shorter than those within the polyhedra. The mechanism of doping for some cases is denoted displacive, rather than interstitial or substitutional, because of competing interactions between the six different partially occupied B positions and dopant atoms. [Pg.257]

In this younger field of chemistry, some examples of anions may be still missing. One possible candidate is the [BN4] ion with a tetrahedral coordination of boron as in cubic BN, others may be adopted from oxoborates. Another interesting feature is the existence of structures with condensed nitridoborate anions derived from portions of BN structures. Until now the only example with a condensed anion structure is U(BN), containing kinked B-B bonded chains of (BN)x with B-B distances near 188 pm, slightly longer than in [B2N4] . ... [Pg.133]

Structures of the lanthanide nitridoborates appear as layered structures with approximate hexagonal arrangements of metal atoms, and typical coordination preferences of anions. As in many metal nitrides, the nitride ion prefers an octahedral environment such as in lanthanum nitride (LaN). As a terminal constituent of a BNx anion, the nitrogen atom prefers a six-fold environment, such as B-N Lns, where Ln atoms form a square pyramid around N. Boron is typically surrounded by a trigonal prismatic arrangement of lanthanide atoms, as in many metal borides (Fig. 8.10). All known structures of lanthanide nitridoborates compromise these coordination patterns. [Pg.134]

An essential requirement for such stabilisation is that the carbocation should be planar, for it is only in this configuration that effective delocalisation can occur. Quantum mechanical calculations for simple alkyl cations do indeed suggest that the planar (sp2) configuration is more stable than the pyramidal (sp3) by = 84 kJ (20 kcal) mol-1. As planarity is departed from, or its attainment inhibited, instability of the cation and consequent difficulty in its formation increases very rapidly. This has already been seen in the extreme inertness of 1-bromotriptycene (p. 87) to SN1 attack, due to inability to assume the planar configuration preventing formation of the carbocation. The expected planar structure of even simple cations has been confirmed by analysis of the n.m.r. and i.r. spectra of species such as Me3C SbF6e they thus parallel the trialkyl borons, R3B, with which they are isoelectronic. [Pg.104]

Boronic acid derivatives are able to form ring structures with other molecules having neighboring functional groups consisting of 1,2- or 1,3-diols, 1,2- or 1,3-hydroxy acids, 1,2- or 1,3-hydroxylamines, 1-2- or 1,3-hydroxyamide, 1,2- or 1,3-hydroxyoxime, as well as various... [Pg.210]

Acyclic boryloxyalkylphosphines with tricoordinated phosphorus and boron are capable of forming cyclic betaine structures with four-coordinated P and B atoms. The ability to be converted into a more stable four-coordinated state accounts for many chemical transformations of boryloxyalkylphosphines. Diphenylboryloxymethyl(methyl) phenylphosphine (92) readily disproportionates to give 1,3,2,5-dioxabora-taphosphoniarinane (103). [Eq. (60)] (83IZV2541). Similar interaction is... [Pg.86]

The B9Hc 2 ion has the structure shown in Figure 13.3. Six of the boron atoms form a trigonal prism, and the other three give a "cap" on each rectangular face of the prism. The structure of the B6H62- ion is much simpler. It consists of an octahedron of boron atoms with a B-H group at each apex. Another... [Pg.428]

Compound LII, on the other hand, can be made readily. It can have either the planar tricovalent boron structure or the "triptych tetra-covalent structure. In the latter structure the nitrogen is attached to boron and should be considerably less basic and nucleophilic than usual. It does in fact react unusually slowly with methyl iodide and with acids. The neutralization reaction with acids in water is not only slow but of zero order with respect to the acid. It is believed to have a rate-determining transformation from the triptych to the more basic form as the first step. [Pg.159]


See other pages where Boron structures with is mentioned: [Pg.805]    [Pg.38]    [Pg.805]    [Pg.38]    [Pg.7]    [Pg.201]    [Pg.382]    [Pg.4]    [Pg.19]    [Pg.29]    [Pg.178]    [Pg.170]    [Pg.185]    [Pg.250]    [Pg.251]    [Pg.133]    [Pg.358]    [Pg.482]    [Pg.355]    [Pg.1025]    [Pg.195]    [Pg.80]    [Pg.485]    [Pg.341]   
See also in sourсe #XX -- [ Pg.121 , Pg.129 ]




SEARCH



Boron Compounds with Macrocyclic Structures

Boron Nitride with Sphalerite Structure (P-BN)

Boron structure

Boronates structure

Boronic structure

Hexagonal Boron Nitride with Graphite-Type Structure (a-BN) and Other Structures of Normal Density

Structure with three-dimensional boron networks

© 2024 chempedia.info