Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Boron hardness

Amorphous boron has not been obtained in the pure state. Crystalline boron is a black powder, extremely hard, with a metallic appearance but with very low electrical conductivity. [Pg.141]

By subjecting boron nitride (a white powder) to high pressure and temperature small crystals of a substance harder than diamond, known as borazon, are obtained. This pressure-temperature treatment changes the structure from the original graphite-like layer structure (p. 163) to a diamond-like structure this hard form can withstand temperatures up to 2000 K. [Pg.156]

The isotope boron-10 is used as a control for nuclear reactors, as a shield for nuclear radiation, and in instruments used for detecting neutrons. Boron nitride has remarkable properties and can be used to make a material as hard as diamond. The nitride also behaves like an electrical insulator but conducts heat like a metal. [Pg.14]

This catalyst should really be purchased rather than made because its use in underground chemistry is limited and is hardly watched at all if not ever. This may change considering its potential as a precursor to the NaBHsCN in Strike s 1 method of choice. There are a lot of ways to make this catalyst, but the least involved is the one using boron trifluoride. What the method calls for is an apparatus called an autoclave. You know how using a vacuum causes the absence of pressure to make things boil at a lower temperature Well, an autoclave is a device that causes an... [Pg.279]

Diamond. Diamond [7782 0-3] is the hardest substance known (see Carbon, diamond, natural). It has a Knoop hardness of 78—80 kN/m (8000—8200 kgf/m ). The next hardest substance is cubic boron nitride with a Knoop value of 46 kN/m, and its inventor, Wentorf, beheves that no manufactured material will ever exceed diamond s hardness (17). In 1987 the world production of natural industrial diamonds (4) was about 110 t (1 g = 5 carats). It should be noted that whereas the United States was the leading consumer of industrial diamonds in 1987 (140 t) only 260 kg of natural industrial diamonds were consumed this is the lowest figure in 48 years (4), illustrating the impact that synthetic diamonds have made on the natural diamond abrasive market. [Pg.10]

Another important function of metallic coatings is to provide wear resistance. Hard chromium, electroless nickel, composites of nickel and diamond, or diffusion or vapor-phase deposits of sUicon carbide [409-21-2], SiC , SiC tungsten carbide [56780-56-4], WC and boron carbide [12069-32-8], B4C, are examples. Chemical resistance at high temperatures is provided by aUoys of aluminum and platinum [7440-06-4] or other precious metals (10—14). [Pg.129]

Boron is an extremely hard refractory soHd having a hardness of 9.3 on Mohs scale and a very low (1.5 x 10 ohm cm ) room temperature electrical conductivity so that boron is classified as a metalloid or semiconductor. These values are for the a-rhombohedral form. [Pg.183]

Lower Oxides. A number of hard, refractory suboxides have been prepared either as by-products of elemental boron production (1) or by the reaction of boron and boric acid at high temperatures and pressures (39). It appears that the various oxides represented as B O, B O, B22O2, and B23O2 may all be the same material ia varying degrees of purity. A representative crystalline substance was determined to be rhombohedral boron suboxide, B12O2, usually mixed with traces of boron or B2O3 (39). A study has been made of the mechanical properties of this material, which exhibits a hardness... [Pg.191]

Uses. Apphcations for boron carbide relate either to its hardness or its high neutron absorptivity ( B isotope). Hot-pressed boron carbide finds use as wear parts, sandblast no22les, seals, and ceramic armor plates but in spite of its hardness, it finds Httie use as an abrasive. However, this property makes it particulady usehil for dressing grinding wheels. [Pg.220]

The greatest use of cubic boron nitride is as an abrasive under the name Bora2on, in the form of small crystals, 1—500 p.m in si2e. Usually these crystals are incorporated in abrasive wheels and used to grind hard ferrous and nickel-based alloys, ranging from high speed steel tools and chilled cast-iron to gas turbine parts. The extreme hardness of the crystals and their resistance to attack by air and hot metal make the wheels very durable, and close tolerances can be maintained on the workpieces. [Pg.220]

Diamondlike Carbides. SiUcon and boron carbides form diamondlike carbides beryllium carbide, having a high degree of hardness, can also be iacluded. These materials have electrical resistivity ia the range of semiconductors (qv), and the bonding is largely covalent. Diamond itself may be considered a carbide of carbon because of its chemical stmeture, although its conductivity is low. [Pg.440]

This boron- and carbon-doped SiC exhibits excellent strength and stiffness, extreme hardness, and thermal and chemical resistance. The strength of this system is not affected by temperatures up to I650°C. Creep is virtually nonexistent up to I400°C. CycHc durabiUty testing conducted at I370°C in air showed no deterioration of strength after 3500 h (94). [Pg.466]

Shielding, armour Hardness, toughness Alumina, boron carbide... [Pg.204]

The material known as bouncing putty is also a silicone polymer with the occasional Si—O—B group in the chain, in this case with 1 boron atom to about every 3-100 silicon atoms. The material flows on storage, and on slow extension shows viscous flow. However, small pieces dropped onto a hard surface show a high elastic rebound, whilst on sudden striking they may shatter. The material had some use in electrical equipment, as a children s novelty and as a useful teaching aid, but is now difficult to obtain. [Pg.834]

In perhaps the most important technological observation, it was found that the reacted Ni3Al products have hardness values equivalent to cold-rolled or rapidly solidified NijAl containing boron additives. The hardness is notable in that the material contains a low density of dislocations. It is observed that crystallites are less than 10 nm in dimension. [Pg.186]

Carbide-based cermets have particles of carbides of tungsten, chromium, and titanium. Tungsten carbide in a cobalt matrix is used in machine parts requiring very high hardness such as wire-drawing dies, valves, etc. Chromium carbide in a cobalt matrix has high corrosion and abrasion resistance it also has a coefficient of thermal expansion close to that of steel, so is well-suited for use in valves. Titanium carbide in either a nickel or a cobalt matrix is often used in high-temperature applications such as turbine parts. Cermets are also used as nuclear reactor fuel elements and control rods. Fuel elements can be uranium oxide particles in stainless steel ceramic, whereas boron carbide in stainless steel is used for control rods. [Pg.10]

The determination of precise physical properties for elemental boron is bedevilled by the twin difficulties of complex polymorphism and contamination by irremovable impurities. Boron is an extremely hard refractory solid of high mp, low density and very low electrical conductivity. Crystalline forms are dark red in transmitted light and powdered forms are black. The most stable ()3-rhombohedral) modification has mp 2092°C (exceeded only by C among the non-metals), bp 4000°C, d 2.35 gcm (a-rhombohedral form 2.45gcm ), A77sublimation 570kJ per mol of B, electrical conductivity at room temperature 1.5 x 10 ohm cm- . [Pg.144]

Boron is a covalently bonded, refractory, non-metallic insulator of great hardness and is thus not directly comparable in its physical properties with Al, Ga, In and Tl, which are all low-melting, rather soft metals having a very low electrical... [Pg.222]


See other pages where Boron hardness is mentioned: [Pg.139]    [Pg.139]    [Pg.64]    [Pg.66]    [Pg.48]    [Pg.157]    [Pg.370]    [Pg.12]    [Pg.12]    [Pg.15]    [Pg.167]    [Pg.397]    [Pg.135]    [Pg.136]    [Pg.190]    [Pg.217]    [Pg.52]    [Pg.53]    [Pg.57]    [Pg.162]    [Pg.48]    [Pg.540]    [Pg.219]    [Pg.220]    [Pg.290]    [Pg.219]    [Pg.220]    [Pg.438]    [Pg.567]    [Pg.108]    [Pg.46]    [Pg.248]    [Pg.567]    [Pg.139]   
See also in sourсe #XX -- [ Pg.231 , Pg.253 ]




SEARCH



Boron carbide hardness

Boron carbide hardness range

Boron nitride Knoop hardness

Boron oxide glass, hardness

Cubic boron nitride hardness

Hardness boron nitrides

Hardness polycrystalline boron nitride

Steels boronized, hardness range

© 2024 chempedia.info