Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Biomass hemicelluloses

Mok, W. S. L. Jerry, M. Antal, J., Uncatalyzed solvolysis of whole biomass hemicellulose by hot compressed liquid water. Industrial and Engineering Chemistry Research 1992, 31,1157. [Pg.225]

Cellulose is found in nature in combination with various other substances, the nature and composition of which depend on the source and previous history of the sample. In most plants, there are three major components cellulose, hemicelluloses, and lignin. Efficient utilization of all three components would greatly help the economics of any scheme to obtain fuel from biomass. Hemicelluloses, lignocellulose and lignin remaining after enzymatic degradation of the cellulose in wood would require chemical or thermal treatment - as distinct from biochemical - to produce a liquid fuel. [Pg.150]

Kim ES, Liu S, Abu-Omar MM, Mosier NS. Selective conversion of biomass hemicellulose to furfural using maleic acid with microwave heating. Energy Fuels 2012 26 1298-304. [Pg.418]

Hemicellulose [9034-32-6] is the least utilized component of the biomass triad comprising cellulose (qv), lignin (qv), and hemiceUulose. The term was origiaated by Schulze (1) and is used here to distinguish the nonceUulosic polysaccharides of plant cell walls from those that are not part of the wall stmcture. Confusion arises because other hemicellulose definitions based on solvent extraction are often used in the Hterature (2—4). The term polyose is used in Europe to describe these nonceUulosic polysaccharides from wood, whereas hemicellulose is used to describe the alkaline extracts from commercial pulps (4). The quantity of hemicellulose in different sources varies considerably as shown in Table 1. [Pg.29]

In the past, research activities in the field of hemicellulose were aimed mainly at utilizing plant biomass by conversion into sugars, chemicals, fuel and as sources of heat energy. However, hemicelluloses, due to their structural varieties and diversity are also attractive as biopolymers, which can be utilized in their native or modified forms in various areas, including food and non-food applications. [Pg.4]

Xylan-type polysaccharides are the main hemicellulose components of secondary cell walls constituting about 20-30% of the biomass of dicotyl plants (hardwoods and herbaceous plants). In some tissues of monocotyl plants (grasses and cereals) xylans occur up to 50% [6j. Xylans are thus available in huge and replenishable amoimts as by-products from forestry, the agriculture, wood, and pulp and paper industries. Nowadays, xylans of some seaweed represent a novel biopolymer resource [4j. The diversity and complexity of xylans suggest that many useful by-products can be potentially produced and, therefore, these polysaccharides are considered as possible biopolymer raw materials for various exploitations. As a renewable resource, xylans are... [Pg.5]

Potential resources of xylans are by-products produced in forestry and the pulp and paper industries (forest chips, wood meal and shavings), where GX and AGX comprise 25-35% of the biomass as well as annual crops (straw, stalks, husk, hulls, bran, etc.), which consist of 25-50% AX, AGX, GAX, and CHX [4]. New results were reported for xylans isolated from flax fiber [16,68], abaca fiber [69], wheat straw [70,71], sugar beet pulp [21,72], sugarcane bagasse [73], rice straw [74], wheat bran [35,75], and jute bast fiber [18]. Recently, about 39% hemicelluloses were extracted from vetiver grasses [76]. [Pg.13]

Figure 1.15 gives an overview of the main constituents of non food biomass. There are three components Cellulose, hemicellulose and lignin. Cellulose and hemicellulose are built form sugar-type monomers, but their cost-effective isolation through enzymatic depolymerization remains a challenge. [Pg.18]

Another approach to produce chemicals via degraded molecules is the fast pyrolysis of biomass at high temperatures in the absence of oxygen. This gives gas, tar and up to 80 wt.% of a so-called bio-oil liquid phase, which is a mixture of hundreds molecules. Some of compounds produced by pyrolysis have been identified as fragments of the basic components of biomass, viz. lignin, cellulose and hemicellulose. The bio-oil composition depends upon the nature of starting... [Pg.57]

However, most of these routes are still economically unattractive and the possibility of creating an equivalent petrochemistry based on biomass, which depends on raising the conversion efficiency and establishing cascades in which the residues of one product serve as inputs for another, still suffers from the relatively unattractive products derived from hemicellulose and lignin. Therefore, to bring back biomass into the chemical business , the utilization of biomass must be enhanced by integrating it into biorefinery (Fig. 2). [Pg.396]

Miller, R. S. and Bellan, J. (1997) A generalized biomass pyrolysis model based on superimposed cellulose, hemicellulose and lignin kinetics. Comb. Sci. and Techn., 126, 97-137. [Pg.270]

The basic structure of all wood and woody biomass consists of cellnlose, hemicelluloses, lignin and extractives. Their relative composition is shown in Table 2.4. Softwoods and hardwoods differ greatly in wood stmctnie and composition. Hardwoods contain a greater fraction of vessels and parenchyma cells. Hardwoods have a higher proportion of cellulose, hemicelluloses and extractives than softwoods, but softwoods have a higher proportion of lignin. Hardwoods ate denser than softwoods. [Pg.49]

Biorefinery includes fractionation for separation of primary refinery products. The fractionation refers to the conversion of wood into its constituent components (cellulose, hemicelluloses and lignin). Processes include steam explosion, aqueous separation and hot water systems. Commercial products of biomass fractionation include levulinic acid, xylitol and alcohols. Figure 3.3 shows the fractionation of wood and chemicals from wood. [Pg.67]

Pyrolysis of biomass is defined as the chemical degradation of the biopolymers (cellulose, lignin and hemicellulose) constituting the wood fuel which initially requires heat. As can be seen in Figure 51, all reaction pathways making up the pyrolysis are not endothermic, which implies that some of the pyrolysis reactions generate heat. However, overall the pyrolysis process is endothermic. [Pg.127]

Complex pyrolysis chemistry takes place in the conversion system of any conventional solid-fuel combustion system. The pyrolytic properties of biomass are controlled by the chemical composition of its major components, namely cellulose, hemicellulose, and lignin. Pyrolysis of these biopolymers proceeds through a series of complex, concurrent and consecutive reactions and provides a variety of products which can be divided into char, volatile (non-condensible) organic compounds (VOC), condensible organic compounds (tar), and permanent gases (water vapour, nitrogen oxides, carbon dioxide). The pyrolysis products should finally be completely oxidised in the combustion system (Figure 14). Emission problems arise as a consequence of bad control over the combustion system. [Pg.132]

Most often, the rates for feedstock destruction in anaerobic digestion systems are based upon biogas production or reduction of total solids (TS) or volatile solids (VS) added to the system. Available data for analyses conducted on the specific polymers in the anaerobic digester feed are summarized in Table II. The information indicates a rapid rate of hydrolysis for hemicellulose and lipids. The rates and extent of cellulose degradation vary dramatically and are different with respect to the MSW feedstock based on the source and processing of the paper and cardboard products (42). Rates for protein hydrolysis are particularly difficult to accurately determine due the biotransformation of feed protein into microbial biomass, which is representative of protein in the effluent of the anaerobic digestion system. [Pg.25]


See other pages where Biomass hemicelluloses is mentioned: [Pg.1325]    [Pg.1348]    [Pg.235]    [Pg.1325]    [Pg.1348]    [Pg.235]    [Pg.34]    [Pg.4]    [Pg.164]    [Pg.22]    [Pg.188]    [Pg.361]    [Pg.220]    [Pg.37]    [Pg.50]    [Pg.58]    [Pg.71]    [Pg.123]    [Pg.141]    [Pg.148]    [Pg.189]    [Pg.391]    [Pg.535]    [Pg.195]    [Pg.21]    [Pg.49]    [Pg.58]    [Pg.138]    [Pg.8]    [Pg.9]    [Pg.25]    [Pg.456]    [Pg.195]    [Pg.304]    [Pg.304]    [Pg.306]   
See also in sourсe #XX -- [ Pg.21 , Pg.49 , Pg.50 , Pg.58 , Pg.67 , Pg.68 , Pg.103 , Pg.182 , Pg.201 ]




SEARCH



Composition, biomass hemicelluloses

Hemicellulose

Hemicellulose, biomass exploitation

Hemicelluloses

© 2024 chempedia.info