Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bile salts functions

MacConkey s medium. This was introduced in 1905 to isolate Enterobacteriaceae from water, urine, faeces, foods, etc. Essentially, it consists of a nutrient medium with bile salts, lactose and a suitable indicator. The bile salts function as a natural surface-active agent which, while not inhibiting the growth of the Enterobacteriaceae, inhibits the growth of Gram-positive bacteria which are likely to be present in the material to be examined. [Pg.18]

Bde salts, cholesterol, phosphoHpids, and other minor components are secreted by the Hver. Bile salts serve three significant physiological functions. The hydrophilic carboxylate group, which is attached via an alkyl chain to the hydrophobic steroid skeleton, allows the bile salts to form water-soluble micelles with cholesterol and phosphoHpids in the bile. These micelles assist in the solvation of cholesterol. By solvating cholesterol, bile salts contribute to the homeostatic regulation of the amount of cholesterol in the whole body. Bile salts are also necessary for the intestinal absorption of dietary fats and fat-soluble vitamins (24—26). [Pg.415]

In general, the sterols perform a structural function, for example as components of the lipid layers of membranes. The Cis, C19 and C21 steroids mainly perform an endocrine function. In other words they are hormones. The bile salts (C24-steroids) fulfil a functional role in digestion in animals. [Pg.295]

SD Mithani, V Bakatselou, CN TenHoor, JB Dressman. Estimation of the increase in solubility of drugs as a function of bile salt concentration. Pharm Res 13 163-167, 1996. [Pg.160]

Albumin is the most abundant (about 55%) of the plasma proteins. An important function of albumin is to bind with various molecules in the blood and serve as a carrier protein, transporting these substances throughout the circulation. Substances that bind with albumin include hormones amino acids fatty acids bile salts and vitamins. Albumin also serves as an osmotic regulator. Because capillary walls are impermeable to plasma proteins, these molecules exert a powerful osmotic force on water in the blood. In fact, the plasma colloid osmotic pressure exerted by plasma proteins is the only force that retains water within the vascular compartment and therefore maintains blood volume (see Chapter 15). Albumin is synthesized in the liver. [Pg.228]

Comparison of their rate of onset and recovery of a treated mucosa has been made [37]. Fatty acids have strong and fast reactivity and allow for a fast recovery of the barrier function. Bile salts and salicylates are moderate, fast-acting agents with fast barrier-function recovery. Strong surfactants and chelators have strong or moderate reactivity and a slow recovery of barrier function. Solvents like dimethylsulfoxide and ethanol have moderate reactivity and act primarily as agents to improve drug miscibility in an aqueous environment. The enhancers listed above are also effective in the small intestine [22]. Enhancers that are more colon specific include ethylaceto-acetate, which must be first metabolically transformed to enamine [38]. [Pg.44]

Hepatocytes make up 60-70% of the total number of liver cells. They have a well-organized intracellular structure with huge numbers of cell organelles to maintain the high metabolic profile. At the apical side or canalicular membrane the cell is specialized for the secretion of bile components. There are several ATP-dependent transport carriers located on this side of the membrane, which transport bile salts, lipids and xenobiotics into the canaliculus. On the sinusoidal side, the cells specialize in uptake and secretion of a wide variety of components. To increase the surface of the membrane for this exchange with the bloodstream, the sinusoidal domain of the membrane is equipped with irregular microvilli. The microvilli are embedded into the fluid and matrix components of the space of Disse and are in close contact with the sinusoidal blood because of the discontinuous and fenestrated SECs. To facilitate its metabolic functions numerous membrane transport mechanisms and receptors are situated in the membrane. [Pg.91]

Because of their similarity to the composition of human bile, which consists mainly of bile salts, phospholipids, and cholesterol, of interest for pharmaceutical studies are mainly binary bile salt micelles (BS/PL) (32,33). The function of the bile is to emulsify lipids in food and to dissolve the fission products of lipids as well as fat-soluble vitamins. The spontaneous formation of micelles is a necessary prerequisite to a contact of the lipophilic fission products with the intestinal wall. For affinity measurements, micellar sys-... [Pg.126]

The answer is D. This patient s tests indicate that he has severe hypercholesterolemia and high blood pressure in conjunction with atherosclerosis. The deaths of several of his family members due to heart disease before age 60 suggest a genetic component, ie, familial hypercholesterolemia. This disease results from mutations that reduce production or interfere with functions of the LDL receptor, which is responsible for uptake of LDL-cholesterol by liver cells. The LDL receptor binds and internalizes LDL-choles-terol, delivers it to early endosomes and then recycles back to the plasma membrane to pick up more ligand. Reduced synthesis of apoproteins needed for LDL assembly would tend to decrease LDL levels in the bloodstream, as would impairment of HMG CoA reductase levels, the rate-limiting step of cholesterol biosynthesis. Reduced uptake of bile salts will also decrease cholesterol levels in the blood. [Pg.121]

Mechanism of Action An antioxidant that prevents oxidation of vitamins A and C, protects fatty acids from aff ack by free radicals, and protects RBCs from hemolysis by oxidizing agents. Therapeutic Effect Prevents and treats vitamin E deficiency. Pharmacokinetics Variably absorbed from the GI tract (requires bile salts, dietary fat, and normal pancreatic function). Primarily concentrated in adipose tissue. Metabolized in the liver. Primarily eliminated by biliary system. [Pg.889]

Among the different roles previously described, the liver exerts an excretory function, being involved in the formation of bile, which drains into the small intestine. Bile salts in the bile play an important role as emulsifying agents for the reabsorption of lipids and fatty acids from the intestine. Hepatic and obstructive biliary diseases lead to abnormal metabolism of bile acids (BAs). [Pg.607]

A quantitatively important pathway of cysteine catabolism in animals is oxidation to cysteine sulfinate (Fig. 24-25, reaction z),450 a two-step hydroxyl-ation requiring 02, NADPH or NADH, and Fe2+. Cysteine sulfinic acid can be further oxidized to cyste-ic acid (cysteine sulfonate),454 which can be decarbox-ylated to taurine. The latter is a component of bile salts (Fig. 22-16) and is one of the most abundant free amino acids in human tissues 455-457 Its concentration is high in excitable tissues, and it may be a neurotransmitter (Chapter 30). Taurine may have a special function in retinal photoreceptor cells. It is an essential dietary amino acid for cats, who may die of heart failure in its absence,458 and under some conditions for humans.459 In many marine invertebrates, teleosts, and amphibians taurine serves as a regulator of osmotic pressure, its concentration decreasing in fresh water and increasing in salt water. A similar role has been suggested for taurine in mammalian hearts. A chronically low concentration of Na+ leads to increased taurine.460 Taurine can be reduced to isethionic acid... [Pg.1407]

BILE. A biller alkaline fluid secreted by the liver inLo llie duodenum, which aids in the digestion of food. The chief components of bile are bile salts and bile pigments. Because of its strong alkalinity, bile neutralizes the acid coming into the duodenum from the stomach. The bile not only performs important functions in the process of digestion, but also serves as a vehicle for the excretion of waste products from the body. [Pg.198]


See other pages where Bile salts functions is mentioned: [Pg.102]    [Pg.102]    [Pg.102]    [Pg.102]    [Pg.606]    [Pg.847]    [Pg.211]    [Pg.1512]    [Pg.278]    [Pg.164]    [Pg.126]    [Pg.208]    [Pg.528]    [Pg.276]    [Pg.176]    [Pg.565]    [Pg.592]    [Pg.5]    [Pg.12]    [Pg.21]    [Pg.89]    [Pg.58]    [Pg.124]    [Pg.365]    [Pg.378]    [Pg.630]    [Pg.745]    [Pg.258]    [Pg.258]    [Pg.139]    [Pg.357]    [Pg.652]    [Pg.37]    [Pg.202]    [Pg.217]    [Pg.467]    [Pg.224]    [Pg.199]    [Pg.8]    [Pg.61]   
See also in sourсe #XX -- [ Pg.7 , Pg.77 , Pg.128 ]




SEARCH



Bile salts

© 2024 chempedia.info