Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymerization batch reactors

Figure 2.3.5 shows the conversion-time data for the batch reactor polymerization of styrene in ether and acetone under FRRPP conditions (80°C). The half-life of the V501 initiator used in the ether system is about 130 min (Wako Chemicals, 1987). It is evident that there is a sharp rise in conversion at the beginning, followed by a period of reduced conversion rate. The onset of reduced conversion rate occurs at around 25%. [Pg.135]

The simplest experimental arrangement is the constant volume batch reactor. Polymerization is accompanied by a pressure drc which must be related to conversion and to the reacticm rate. In a bulk polymerization carried cmt isothermally in a 1-phase S3 em the following basic thermodynamic equation applies... [Pg.401]

Soap-starved recipes have been developed that yield 60 wt % soHds low viscosity polymer emulsions without concentrating. It is possible to make latices for appHcation as membranes and similar products via emulsion polymerization at even higher soHds (79). SoHds levels of 70—80 wt % are possible. The paste-like material is made in batch reactors and extmded as product. [Pg.27]

The manufacture of siHcone polymers via anionic polymerization is widely used in the siHcone industry. The anionic polymerization of cycHc siloxanes can be conducted in a single-batch reactor or in a continuously stirred reactor (94,95). The viscosity of the polymer and type of end groups are easily controUed by the amount of added water or triorganosUyl chain-terminating groups. [Pg.46]

Flexible batch. Both the formula and the processing instructions can change from batch to batch. Emulsion polymerization reactors are a good example of a flexible batch facility. The recipe for each produc t must detail Both the raw materials required and how conditions within the reac tor must be sequenced in order to make the desired product. [Pg.752]

A factor in addition to the RTD and temperature distribution that affects the molecular weight distribution (MWD) is the nature of the chemical reaciion. If the period during which the molecule is growing is short compared with the residence time in the reactor, the MWD in a batch reactor is broader than in a CSTR. This situation holds for many free radical and ionic polymerization processes where the reaction intermediates are very short hved. In cases where the growth period is the same as the residence time in the reactor, the MWD is narrower in batch than in CSTR. Polymerizations that have no termination step—for instance, polycondensations—are of this type. This topic is treated by Denbigh (J. Applied Chem., 1, 227 [1951]). [Pg.2102]

A semi-batch reactor has the same disadvantages as the batch reactor. However, it has the advantages of good temperature control and the capability of minimizing unwanted side reactions by maintaining a low concentration of one of the reactants. Semi-batch reactors are also of value when parallel reactions of different orders occur, where it may be more profitable to use semi-batch rather than batch operations. In many applications semi-batch reactors involve a substantial increase in the volume of reaction mixture during a processing cycle (i.e., emulsion polymerization). [Pg.226]

Inhibitors can be present in most reaction ingredients. They are deliberately added to monomers to prevent premature polymerization. Ingredient streams such as monomers are cleaned and handled carefully to avoid inhibition in fundamental studies, especially in most academic laboratories. Commercial processes, however, are usually operated with inhibitors present in the feed streams, particularly in the monomer. When such ingredients are used in a batch reactor, a dead time is observed before the reaction starts. [Pg.2]

Continuous stirred-tank reactors can behave very differently from batch reactors with regard to the number of particles formed and polymerization rate. These differences are probably most extreme for styrene, a monomer which closely follows Smith-Ewart Case 2 kinetics. Rate and number of particles in a batch reactor follows the relationship expressed by Equation 13. [Pg.9]

The rate of polymerization with styrene-type monomers is directly proportional to the number of particles formed. In batch reactors most of the particles are nucleated early in the reaction and the number formed depends on the emulsifier available to stabilize these small particles. In a CSTR operating at steady-state the rate of nucleation of new particles depends on the concentration of free emulsifier, i.e. the emulsifier not adsorbed on other surfaces. Since the average particle size in a CSTR is larger than the average size at the end of the batch nucleation period, fewer particles are formed in a CSTR than if the same recipe were used in a batch reactor. Since rate is proportional to the number of particles for styrene-type monomers, the rate per unit volume in a CSTR will be less than the interval-two rate in a batch reactor. In fact, the maximum CSTR rate will be about 60 to 70 percent the batch rate for such monomers. Monomers for which the rate is not as strongly dependent on the number of particles will display less of a difference between batch and continuous reactors. Also, continuous reactors with a particle seed in the feed may be capable of higher rates. [Pg.9]

In batch reactors, heat transfer will also limit the rate of heat-up to the required temperatures for initiation of polymerization. Use of a multiple catalyst system to provide lower temperature initiation has been proposed to minimize the time and energy required in heating. [Pg.75]

Peaking and Non-isothermal Polymerizations. Biesenberger a (3) have studied the theory of "thermal ignition" applied to chain addition polymerization and worked out computational and experimental cases for batch styrene polymerization with various catalysts. They define thermal ignition as the condition where the reaction temperature increases rapidly with time and the rate of increase in temperature also increases with time (concave upward curve). Their theory, computations, and experiments were for well stirred batch reactors with constant heat transfer coefficients. Their work is of interest for understanding the boundaries of stability for abnormal situations like catalyst mischarge or control malfunctions. In practice, however, the criterion for stability in low conversion... [Pg.75]

Two additional results were noted during this series of experiments. It was found that plugging of the reactor occurred when the conversion reached about 60%. No satisfactory explanation or cause for the plugging was determined. It was also noted that, regardless of the rate of polymerization, no further reaction occurred after a period of about 60 to 75 minutes. This is in contrast to reaction times of up to three hours for the same recipe used in a batch reactor. [Pg.114]

A summary of the nine batch reactor emulsion polymerizations and fifteen tubular reactor emulsion polymerizations are presented in Tables III IV. Also, many tubular reactor pressure drop measurements were performed at different Reynolds numbers using distilled water to determined the laminar-turbulent transitional flow regime. [Pg.119]

Figure I. Gas Phase Propylene Polymerization (batch reactor, 1 L, 80°C, 441... Figure I. Gas Phase Propylene Polymerization (batch reactor, 1 L, 80°C, 441...
In this work, the characteristic "living" polymer phenomenon was utilized by preparing a seed polymer in a batch reactor. The seed polymer and styrene were then fed to a constant flow stirred tank reactor. This procedure allowed use of the lumped parameter rate expression given by Equations (5) through (8) to describe the polymerization reaction, and eliminated complications involved in describing simultaneous initiation and propagation reactions. [Pg.297]

To run the residence time distribution experiments under conditions which would simulate the conditions occurring during chemical reaction, solutions of 15 weight percent and 30 percent polystyrene in benzene as well as pure benzene were used as the fluid medium. The polystyrene used in the RTD experiment was prepared in a batch reactor and had a number average degree of polymerization of 320 and a polydispersity index, DI, of 1.17. [Pg.304]

In a batch reactor, the relative monomer concentrations will change with time because the two monomers react at different rates. For polymerizations with a short chain life, the change in monomer concentration results in a copolymer composition distribution where polymer molecules formed early in the batch will have a different composition from molecules formed late in the batch. For living polymers, the drift in monomer composition causes a corresponding change down the growing chain. This phenomenon can be used advantageously to produce tapered block copolymers. [Pg.489]

It is assumed that most of the monomer has undergone solution polymerization in a batch reactor resulting in a high solids content and a relatively low monomer concentration, herein designated Mq. At this point a certain amount of initiator is to be added to bring the initiator concentration to Iq. It is desired to reduce the monomer concentration Mq to a final concentration Mf (around 0.5 vol%) in the minimum possible time by proper choice of a temperature policy. [Pg.322]

For purposes of simulation and illustration we have chosen a batch reactor, solution polymerization of methylmethacrylate (MMA). Kinetic data were taken from Schmidt and Ray (1981) and thermodynamic data from Bywater (1955). We do not here consider the influence of diffusion control on the termination or other rate processes because such effects may be small when in a solution which is siifHciently dilute or when the polymer is of low molecular weight. [Pg.323]

In this paper we formulated and solved the time optimal problem for a batch reactor in its final stage for isothermal and nonisothermal policies. The effect of initiator concentration, initiator half-life and activation energy on optimum temperature and optimum time was studied. It was shown that the optimum isothermal policy was influenced by two factors the equilibrium monomer concentration, and the dead end polymerization caused by the depletion of the initiator. When values determine optimum temperature, a faster initiator or higher initiator concentration should be used to reduce reaction time. [Pg.331]

This paper presents the physical mechanism and the structure of a comprehensive dynamic Emulsion Polymerization Model (EPM). EPM combines the theory of coagulative nucleation of homogeneously nucleated precursors with detailed species material and energy balances to calculate the time evolution of the concentration, size, and colloidal characteristics of latex particles, the monomer conversions, the copolymer composition, and molecular weight in an emulsion system. The capabilities of EPM are demonstrated by comparisons of its predictions with experimental data from the literature covering styrene and styrene/methyl methacrylate polymerizations. EPM can successfully simulate continuous and batch reactors over a wide range of initiator and added surfactant concentrations. [Pg.360]

In this work, a comprehensive kinetic model, suitable for simulation of inilticomponent aiulsion polymerization reactors, is presented A well-mixed, isothermal, batch reactor is considered with illustrative purposes. Typical model outputs are PSD, monomer conversion, multivariate distritution of the i lymer particles in terms of numtoer and type of contained active Chains, and pwlymer ccmposition. Model predictions are compared with experimental data for the ternary system acrylonitrile-styrene-methyl methacrylate. [Pg.380]

The data given below are typical of the polymerization of vinyl phenylbutyrate in dioxane solution in a batch reactor using benzoyl peroxide as an initiator. The reaction was carried out isothermally at 60 °C using an initial monomer concentration of 73 kg/m3. From the following data determine the order of the reaction and the reaction rate constant. Note that there is an induction period at the start of the reaction so that you may find it useful to use a lower limit other than zero in your integration over time. The reaction order may be assumed to be an integer. [Pg.66]


See other pages where Polymerization batch reactors is mentioned: [Pg.127]    [Pg.127]    [Pg.436]    [Pg.508]    [Pg.521]    [Pg.521]    [Pg.521]    [Pg.254]    [Pg.31]    [Pg.32]    [Pg.8]    [Pg.32]    [Pg.76]    [Pg.113]    [Pg.134]    [Pg.298]    [Pg.56]    [Pg.494]    [Pg.309]    [Pg.318]    [Pg.322]    [Pg.338]    [Pg.440]    [Pg.288]    [Pg.581]    [Pg.343]   
See also in sourсe #XX -- [ Pg.368 ]




SEARCH



Batch reactor

Reactors batch reactor

© 2024 chempedia.info