Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Atomic interaction detection method

Abstract In this chapter we discuss the influence of ir-electron delocalization on the properties of H-bonds. Hence the so-called resonance-assisted hydrogen bonds (RAHBs) are characterized since such systems are mainly classified in the literature as those where TT-electron delocalization plays a very important role. Both the intramolecular and intermolecular RAHBs are described. RAHBs are often indicated as very strong interactions thus, their possible covalent nature is also discussed. Examples of the representative crystal structures as well as the results of the ab initio and DFT calculations are presented. Additionally the RAHB systems, and the other complexes where rr-electron delocalization effects are detectable, are characterized with the use of the QTAIM (Quantum Theory Atoms in Molecules ) method. The decomposition scheme of the interaction energy is applied to expand the knowledge of the nature of the RAHBs. [Pg.487]

Ion detection methods rely on the phenomenon that the interaction of photons with a neutral particle results in its ionization either the negatively charged electron or the positively charged atomic/molecular ion can be detected. [Pg.79]

The sensor detection of EEPs is methodically more complicated than the detection of atoms and radicals. With atoms and radicals being adsorbed on the surface of semiconductor oxide films, their electrical conductivity varies merely due to the adsorption in the charged form. If the case is that EEPs interact with an oxide surface, at least two mechanisms of sensor electrical conductivity changes can take place. One mechanism is associated with the effects of charged adsorption and the other is connected with the excitation energy transfer to the electron... [Pg.296]

From the above-made review of literature, one may infer that the interaction of metastable atoms of rare gases with a surface of semiconductors and dielectrics is studied, but little. The study of the mechanism of transferring energy of electron-excited particles to a solid body during the processes under discussion is urgent. The method of sensor detection of rare gas metastable atoms makes it possible to obtain new information about the heterogeneous de-excitation of metastable atoms inasmuch as it combines high sensitivity with the possibility to conduct measurements under different conditions. [Pg.326]

Although following similar nuclear reaction schemes, nuclear analytical methods (NAMs) comprise bulk analysing capability (neutron and photon activation analysis, NAA and PAA, respectively), as well as detection power in near-surface regions of solids (ion-beam analysis, IB A). NAMs aiming at the determination of elements are based on the interaction of nuclear particles with atomic nuclei. They are nuclide specific in most cases. As the electronic shell of the atom does not participate in the principal physical process, the chemical bonding status of the element is of no relevance. The general scheme of a nuclear interaction is ... [Pg.662]

Prominent NAMs are NAA, PAA, RBS and PIXE. Actually, PIXE is not a true nuclear analytical method, because it is based on the interaction of fast ions with the electron clouds of the atoms. A suitable combination of NAMs allows all elements of the periodic table to be studied. PAA is especially suitable for the determination of light elements, whereas NAA, RBS and PIXE detect medium and heavy elements very well. [Pg.662]

Table 8.76 shows the main characteristics of voltammetry. Trace-element analysis by electrochemical methods is attractive due to the low limits of detection that can be achieved at relatively low cost. The advantage of using standard addition as a means of calibration and quantification is that matrix effects in the sample are taken into consideration. Analytical responses in voltammetry sometimes lack the predictability of techniques such as optical spectrometry, mostly because interactions at electrode/solution interfaces can be extremely complex. The role of the electrolyte and additional solutions in voltammetry are crucial. Many determinations are pH dependent, and the electrolyte can increase both the conductivity and selectivity of the solution. Voltammetry offers some advantages over atomic absorption. It allows the determination of an element under different oxidation states (e.g. Fe2+/Fe3+). [Pg.670]

In this paper a method [11], which allows for an a priori BSSE removal at the SCF level, is for the first time applied to interaction densities studies. This computational protocol which has been called SCF-MI (Self-Consistent Field for Molecular Interactions) to highlight its relationship to the standard Roothaan equations and its special usefulness in the evaluation of molecular interactions, has recently been successfully used [11-13] for evaluating Eint in a number of intermolecular complexes. Comparison of standard SCF interaction densities with those obtained from the SCF-MI approach should shed light on the effects of BSSE removal. Such effects may then be compared with those deriving from the introduction of Coulomb correlation corrections. To this aim, we adopt a variational perturbative valence bond (VB) approach that uses orbitals derived from the SCF-MI step and thus maintains a BSSE-free picture. Finally, no bias should be introduced in our study by the particular approach chosen to analyze the observed charge density rearrangements. Therefore, not a model but a theory which is firmly rooted in Quantum Mechanics, applied directly to the electron density p and giving quantitative answers, is to be adopted. Bader s Quantum Theory of Atoms in Molecules (QTAM) [14, 15] meets nicely all these requirements. Such a theory has also been recently applied to molecular crystals as a valid tool to rationalize and quantitatively detect crystal field effects on the molecular densities [16-18]. [Pg.105]

Catalano et al. reported the synthesis and characterization of a new series of Pd°-based metallocrypates that bind Tl1 ion in the absence of attractive ligand interactions through metal-lophilic connections. The cationic species have been characterized by a variety of methods and have considerable stability. From the solid-state structural data it is apparent that interaction of the metal atoms with one another is the dominant bonding interaction within the metallocryptate cavity. The characterization of complexes supports the concept of metallophilic behavior as a fundamental component of bonding in closed-shell systems. These materials may ultimately serve as prototypical systems for detection of closed-shell ions 946... [Pg.650]

Measurements of the intensity and wavelength of radiation that is either absorbed or emitted provide the basis for sensitive methods of detection and quantitation. Absorption spectroscopy is most frequently used in the quantitation of molecules but is also an important technique in the quantitation of some atoms. Emission spectroscopy covers several techniques that involve the emission of radiation by either atoms or molecules but vary in the manner in which the emission is induced. Photometry is the measurement of the intensity of radiation and is probably the most commonly used technique in biochemistry. In order to use photometric instruments correctly and to be able to develop and modify spectroscopic techniques it is necessary to understand the principles of the interaction of radiation with matter. [Pg.36]

As will be explained in Chapter 7, spectroscopic methods are a powerful way to probe the active sites of the hydrogenases. Often spectroscopic methods are greatly enhanced by judicious enrichment of the active sites with a stable isotope. For example, Mossbauer spectroscopy detects only the isotope Fe, which is present at only 2.2 per cent abundance in natural iron. Hydrogen atoms, which cannot be seen by X-ray diffraction for example, can be studied by EPR and ENDOR spectroscopy, which exploit the hyperfine interactions between the unpaired electron spin and nuclear spins. More detailed information has been derived from hyperfine interactions with nuclei such as Ni and Se, in the active sites. In FTTR spec-... [Pg.100]


See other pages where Atomic interaction detection method is mentioned: [Pg.90]    [Pg.379]    [Pg.70]    [Pg.218]    [Pg.182]    [Pg.135]    [Pg.55]    [Pg.137]    [Pg.3]    [Pg.51]    [Pg.79]    [Pg.7523]    [Pg.282]    [Pg.355]    [Pg.152]    [Pg.8]    [Pg.153]    [Pg.1824]    [Pg.28]    [Pg.105]    [Pg.4]    [Pg.195]    [Pg.3]    [Pg.114]    [Pg.59]    [Pg.190]    [Pg.269]    [Pg.154]    [Pg.111]    [Pg.27]    [Pg.352]    [Pg.165]    [Pg.132]    [Pg.59]    [Pg.181]    [Pg.34]    [Pg.214]    [Pg.57]    [Pg.236]    [Pg.25]   
See also in sourсe #XX -- [ Pg.82 ]




SEARCH



Atomic interactions

Atomization methods

Atoms methods

Detection atomic

Detection methods

Interaction Methods

© 2024 chempedia.info