Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Element-selective detection using atomic absorption spectrometry

Detection techniques of high sensitivity, selectivity, and ease of coupling with sample preparation procedures are of special interest for measuring PGM content in biological and environmental samples. ICP MS, electrothermal atomic absorption spectrometry (ET AAS), adsorptive voltammetry (AV), and neutron activation analysis (NAA) have fotmd the widest applications, both for direct determination of the total metal content in the examined samples and for coupling with instrumental separation techniques. Mass spectrometry coupled with techniques such as electrospray ionization (ESI) and capillary electrophoresis (CE) (e.g., ESI MS", LC ESI MS", LC ICP MS, CE MS", and CE ICP MS) offer powerful potential for speciation analysis of metals. MS is widely used for examination of the distribution of the metals in various materials (elemental analysis) and for elucidation of the... [Pg.377]

Whatever the analytical method and the determinand may be, the greatest care should be devoted to the proper selection and use of internal standards, careful preparation of blanks and adequate calibration to avoid serious mistakes. Today the Antarctic investigator has access to a multitude of analytical techniques, the scope, detection power and robustness of which were simply unthinkable only two decades ago. For chemical elements they encompass Atomic Absorption Spectrometry (AAS) [with Flame (F) and Electrothermal Atomization (ETA) and Hydride or Cold Vapor (HG or CV) generation]. Atomic Emission Spectrometry (AES) [with Inductively Coupled Plasma (ICP), Spark (S), Flame (F) and Glow Discharge/Hollow Cathode (HC/GD) emission sources], Atomic Fluorescence Spectrometry (AFS) [with HC/GD, Electrodeless Discharge (ED) and Laser Excitation (LE) sources and with the possibility of resorting to the important Isotope... [Pg.13]

Many researchers have attempted to determine mercury levels in the blood, urine, tissues, and hair of humans and animals. Most methods have used atomic absorption spectrometry (AAS), atomic fluorescence spectrometry (AFS), or neutron activation analysis (NAA). In addition, methods based on mass spectrometry (MS), spectrophotometry, and anodic stripping voltametry (ASV) have also been tested. Of the available methods, cold vapor (CV) AAS is the most widely used. In most methods, mercury in the sample is reduced to the elemental state. Some methods require predigestion of the sample prior to reduction. At all phases of sample preparation and analysis, the possibility of contamination from mercury found naturally in the environment must be considered. Rigorous standards to prevent mercury contamination must be followed. Table 6-1 presents details of selected methods used to determine mercury in biological samples. Methods have been developed for the analysis of mercury in breath samples. These are based on AAS with either flameless (NIOSH 1994) or cold vapor release of the sample to the detection chamber (Rathje et al. 1974). Flameless AAS is the NIOSH-recommended method of determining levels of mercury in expired air (NIOSH 1994). No other current methods for analyzing breath were located. [Pg.538]

Atomic spectrometric techniques such as flame atomic absorption spectrometry (FAAS), electrothermal AAS (ETAAS), inductively coupled plasma atomic emission spectrometry (ICP-AES), and ICP-MS are used for the determination of elements, particularly metals. ICP-MS is the most sensitive, typically with microgram per liter detection limits and multielement capability but it has high start-up and operating costs. UV-visible spectrophotometry is also used for the determination of metal ions and anions such as nitrate and phosphate (usually by selective deriva-tization). It is a low cost and straightforward technique, and portable (handheld) instruments are available for field deployment. Flow injection (FI) provides a highly reproducible means of manipulating solution chemistry in a contamination free environment, and is often used for sample manipulation, e.g., derivatization, dilution, preconcentration and matrix removal, in conjunction with spectrometric detection. Electroanalytical techniques, particularly voltammetry and ion-selective electrodes (ISEs), are... [Pg.1097]

A variety of techniques based on different physical principles have been used for trace element measurements. The most commonly used include neutron activation analysis (NAA) [1], atomic absorption spectrometry [2,3], and mass spectrometry [4-7]. The two distinct advantages primarily responsible for the selection of NAA in earlier studies appeared to be the option to determine several trace elements simultaneously and the elimination of complex chemical separation steps. The poor precision values obtained by NAA have recently necessitated prechemical separation, which introduces problems of analyte loss, contamination, and blank correction. However, the major drawbacks are the requirement of a nuclear reactor facility, the slow turnaround of the samples, and the relatively high cost of analysis. Nonetheless, NAA is a well-established, multielemental, nondestructive technique with detection limits for most elements in the 1-50 p.g/liter range. This topic is covered by Heydom in Chap. 13 of this book. [Pg.150]

Trace elements in leachates and digests of loaded filters, sediment traps and centrifuge materials can be detected using different atomic absorption spectrometric techniques. Depending on the amount of available sample solution and concentration of the respective elements either common flame, flame-injection or electrothermal AAS (ETAAS) are selected. The principle of atomic absorption spectrometry, its advantages and limitations have... [Pg.355]

Nowadays, atomic absorption spectrometry (AAS) systems are comparatively inexpensive element selective detectors, and some of the instruments also show multi(few)-element capability. There are flame (F AAS), cold vapor (CV AAS), hydride-generating (HG AAS), and graphite furnace (GF-AAS) systems. However, the use of AAS-based detectors for on-line speciation analysis is problematic. F AAS is usually not sensitive enough for speciation analysis at "normal" environmental or physiological concentrations and sample intake is high (4—5 ml/min), which complicates on-line hyphenations with LC an auxiliary flow is necessary. CV AAS and HG AAS use selective derivatization for matrix separation and increased sensitivity for the derivatized species. But, the detector response is species dependent and interferences can be a problem. GF AAS requires only a few microliters of sample and provides low detection limits, between 0.1 and 5 gg/1. Matrix interferences are widely eliminated by Zeeman correction and matrix modifiers nevertheless, quantification errors were reported as atomization temperature does not exceed 2900°C. The most critical problem in respect to speciation analysis is the discontinuous measiuement because of the temperature program operation employed, which takes a few minutes. Therefore, GF AAS is unsuitable for on-line hyphenations as chromatograms carmot be monitored with sufficient resolution. [Pg.643]

Atomic Absorption/Emission Spectrometry. Atomic absorption or emission spectrometric methods are commonly used for inorganic elements in a variety of matrices. The general principles and appHcations have been reviewed (43). Flame-emission spectrometry allows detection at low levels (10 g). It has been claimed that flame methods give better reproducibiHty than electrical excitation methods, owing to better control of several variables involved in flame excitation. Detection limits for selected elements by flame-emission spectrometry given in Table 4. Inductively coupled plasma emission spectrometry may also be employed. [Pg.243]

Table 8.76 shows the main characteristics of voltammetry. Trace-element analysis by electrochemical methods is attractive due to the low limits of detection that can be achieved at relatively low cost. The advantage of using standard addition as a means of calibration and quantification is that matrix effects in the sample are taken into consideration. Analytical responses in voltammetry sometimes lack the predictability of techniques such as optical spectrometry, mostly because interactions at electrode/solution interfaces can be extremely complex. The role of the electrolyte and additional solutions in voltammetry are crucial. Many determinations are pH dependent, and the electrolyte can increase both the conductivity and selectivity of the solution. Voltammetry offers some advantages over atomic absorption. It allows the determination of an element under different oxidation states (e.g. Fe2+/Fe3+). [Pg.670]

Cd + can be detected by the insolubility of its yeUow sulfide (see Analytical Chemistry of the Transition Elements). Several reaction and spot tests allow the identification of Cd +. Quantitative determinations are based on gravimetric (CdS or /3-naphthylquinoltne complex) or titrimetric (EDTA) methods. Several physical techniques can be used in quantitative and qualitative analysis polarography (or related techniques, even in the presence of Zn, Cu, Bi and Pb), electrodeposition, colorimetric methods, flamephotometric methods, neutron activation, atomic absorption, and ICP spectrometry and ion selective electrodes. [Pg.529]


See other pages where Element-selective detection using atomic absorption spectrometry is mentioned: [Pg.160]    [Pg.34]    [Pg.344]    [Pg.142]    [Pg.485]    [Pg.95]    [Pg.5046]    [Pg.44]    [Pg.228]    [Pg.230]    [Pg.3]    [Pg.457]    [Pg.1563]    [Pg.1600]    [Pg.335]    [Pg.362]   
See also in sourсe #XX -- [ Pg.643 ]




SEARCH



Absorption spectrometry

Atom selectivity

Atomic absorption elements

Atomic absorption spectrometry

Atomic absorption spectrometry atomizers

Detection atomic

Detection element

Detection selection

Detection using

Element-selective-detection

Selected Elements

Selection atoms

Selective detection

© 2024 chempedia.info