Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Atmospheric Pressure Chemical Ionisation APCI

Fast atom bombardment (FAB) Plasma desorption (PD) Liquid secondary-ion mass spectrometry (LSIMS) Thermospray (TSP)/plasmaspray (PSP) Electrohydrodynamic ionisation (EHI) Multiphoton ionisation (MPI) Atmospheric pressure chemical ionisation (APCI) Electrospray ionisation (ESI) Ion spray (ISP) Matrix-assisted laser desorption/ionisation (MALDI) Atmospheric pressure photoionisation (APPI) Triple quadrupole (QQQ) Four sector (EBEB) Hybrid (EBQQ) Hybrid (EB-ToF, Q-ToF) Tandem ToF-ToF Photomultiplier... [Pg.352]

Atmospheric pressure chemical ionisation (APCI) MH+ (M - II) M, Q, ToF, FTMS Polar and some nonpolar organics <1 500... [Pg.358]

LC-APCI-MS is a derivative of discharge-assisted thermospray, where the eluent is ionised at atmospheric pressure. In an atmospheric pressure chemical ionisation (APCI) interface, the column effluent is nebulised, e.g. by pneumatic or thermospray nebulisation, into a heated tube, which vaporises nearly all of the solvent. The solvent vapour acts as a reagent gas and enters the APCI source, where ions are generated with the help of electrons from a corona discharge source. The analytes are ionised by common gas-phase ion-molecule reactions, such as proton transfer. This is the second-most common LC-MS interface in use today (despite its recent introduction) and most manufacturers offer a combined ESI/APCI source. LC-APCI-MS interfaces are easy to operate, robust and do not require extensive optimisation of experimental parameters. They can be used with a wide variety of solvent compositions, including pure aqueous solvents, and with liquid flow-rates up to 2mLmin-1. [Pg.506]

A range of MS ionisation techniques are available. Atmospheric pressure chemical ionisation (APCI) and electrospray ionisation (ESI) are becoming the methods of choice for the analysis of low molecular weight additives of mass/ charge (m/z) ratio <3,000. [Pg.570]

In off-line coupling of LC and MS for the analysis of surfactants in water samples, the suitability of desorption techniques such as Fast Atom Bombardment (FAB) and Desorption Chemical Ionisation was well established early on. In rapid succession, new interfaces like Atmospheric Pressure Chemical Ionisation (APCI) and Electrospray Ionisation (ESI) were applied successfully to solve a large number of analytical problems with these substance classes. In order to perform structure analysis on the metabolites and to improve sensitivity for the detection of the various surfactants and their metabolites in the environment, the use of various MS-MS techniques has also proven very useful, if not necessary, and in some cases even high-resolution MS is required. [Pg.25]

These problems have largely been solved by the development of a wide variety of powerful LC-MS interfaces (reviewed in Refs. [1-3]). In the following paragraphs, the two most widely used atmospheric pressure ionisation (API) systems, namely atmospheric pressure chemical ionisation (APCI) and electrospray ionisation (ESI), are briefly described, along with the older technique of thermospray ionisation... [Pg.144]

Several years later, the next step in the application of MS-MS for mixture analysis was developed by Hunt et al. [3-5] who described a master scheme for the direct analysis of organic compounds in environmental samples using soft chemical ionisation (Cl) to perform product, parent and neutral loss MS-MS experiments for identification [6,7]. The breakthrough in LC-MS was the development of soft ionisation techniques, e.g. desorption ionisation (continuous flow-fast atom bombardment (CF-FAB), secondary ion mass spectrometry (SIMS) or laser desorption (LD)), and nebulisation ionisation techniques such as thermospray ionisation (TSI), and atmospheric pressure ionisation (API) techniques such as atmospheric pressure chemical ionisation (APCI), and electrospray ionisation (ESI). [Pg.152]

Detection of M2D-C3-0-(E0)n-CH3 was possible by both positive ion mode atmospheric pressure chemical ionisation (APCI) and electrospray ionisation (ESI) MS methods, with good response down to absolute injections of 0.1 ng. However, ionisation in the negative ion mode was negligible at all concentrations analysed, as the polyether-modified structure has no sites capable of adducting with anions, nor has it any moieties capable of cleavage to yield anionic species. [Pg.240]

In one study, however, atmospheric pressure chemical ionisation (APCI)-MS was applied for the simultaneous determination of LAS and octylphenol ethoxylates (OPEO) in surface waters after preconcentration by solid-phase extraction (SPE) on Cis cartridges [1]. In the chromatogram from a Ci-reversed phase (RP) column, peaks arising from both the anionic LAS and the non-ionic OPEO were detected after positive ionisation, while in negative ionisation mode, OPEO were discriminated and only the anionic surfactant was observed. Surprisingly, the relative sensitivity for detection of LAS was approximately five times higher in positive ion mode, which led the authors to the conclusion that this ionisation mode was desirable for quantitative work. [Pg.318]

The qualitative determination of anionic surfactants in environmental samples such as water extracts by flow injection analysis coupled with MS (FIA-MS) applying a screening approach in the negative ionisation mode sometimes may be very effective. Using atmospheric pressure chemical ionisation (APCI) and electrospray ionisation (ESI), coupled with FIA or LC in combination with MS, anionic surfactants are either predominantly or sometimes exclusively ionised in the negative mode. Therefore, overview spectra obtained by FIA—MS(—) often are very clear and free from disturbing matrix components that are ionisable only in the positive mode. However, the advantage of clear... [Pg.336]

For sensitive quantification in LC-MS analysis of non-ionic surfactants, selection of suitable masses for ion monitoring is important. The nonionic surfactants easily form adducts with alkaline and other impurities present in, e.g. solvents. This may result in highly complicated mass spectra, such as shown in Fig. 4.3.1(A) (obtained with an atmospheric pressure chemical ionisation (APCI) interface) and Fig. 4.3.2 (obtained with an ESI interface). [Pg.503]

Undoubtedly, mass spectrometric detection has a substantial role to play in condensed-phase chromatographic analyses of toxic impurities. As in GC/MS, it can be highly sensitive, although this is probably more analyte-specific than in GC/MS. Selectivity can be gained by SIM on single quadrupoles or, if necessary, SRM on MS/MS instruments. What must be considered is the appropriate ionisation mode to be used in LC/MS. Most modern instruments use atmospheric pressure ionisation sources, including electrospray ionisation (ESI), atmospheric pressure chemical ionisation (APCI) and more recently atmospheric pressure photoionisation (APPI). [Pg.100]

Fenn published work in 1989 [7-9] showing ionisation of large molecules by electrospray ionisation (ESI). Fenn built on the early work of Malcolm Dole [10] but Fenn used a counter current gas to assist with desolvation of the droplets and aid the formation of the ions. In the early 1990s, experiments with atmospheric pressure ionisation (API) showed promise and in a short space of time the first commercial systems utilising the new techniques of ESI [11] and Atmospheric Pressure Chemical Ionisation (APCI) began to appear on analysts benches. The sensitive, reliable and easily operated LC-MS system had arrived. [Pg.157]

Atmospheric pressure chemical ionisation (APCI, Fig. 16.21c) is a high sensitivity process that can also lead to the presence of multiply charged species (M + nH)n+. [Pg.312]

The thermospray, particle beam electrospray (ES) (Fig. 4.4) and atmospheric pressure chemical ionisation (APCI) have been used in HPLC-MS-MS. The ES and APCI are both atmospheric pressure ionisation systems. The column effluent is nebulised and ionised in the atmospheric pressure region and the ions are then... [Pg.78]

The premise is to utilise a liquid film to provide a reaction environment which can be dynamically controlled in terms of heat and mass flux (influx/effiux) and to complement this with the on-line monitoring technique of Atmospheric Pressure chemical Ionisation (APcI)-Ion Trap Mass Spectrometry (ITMS). This technique allows the flux of protonated molecular ions (Mlf to be directly monitored (mass spectral dimension 1) and to fragment these species under tailored conditions within the ion trap (Collision Induced Dissociation (CID),mass spectral dimension 2), to produce fragment ions representative of the parent ion. This capability is central to allowing species with a common molecular weight to be quantified, for example butan-2,3-dione (MW=86 MH =87, glucose degradation product) and 3-methylbutanal (MW=86 MH =87, Strecker aldehyde from leucine). [Pg.182]

Atmospheric pressure chemical ionisation (APCI) is a technique that also creates gas phase ions from the liquid sample. It too takes place at atmospheric pressure and uses a similar interface to that in ESI. As in ESI, the sample solution is mixed with a nebulising gas and the sample arrives in the spray chamber as a fine mist of droplets or spray. In APCI, an extra component - a corona discharge - is used to further ionise the analyte droplets in a manner similar to straightforward Cl (Figure 2.34). While a small amount of fragmentation may occur, the technique is still considered to be a soft ionisation one. The gas-phase ionisation in APCI is more effective than ESI for analysing less polar species. ESI and APCI are complementary methods. [Pg.40]

Most examples in the literature exploit electrospray ionisation but some research groups have reported the use of atmospheric pressure chemical ionisation (APCI) on-chip. In one such example, the chip was composed of two wafers, one made of silicon wafer one made of pyrex glass . The silicon wafer contained the nebuliser gas inlet, vapouriser channel and a nozzle. The sample inlet from the LC column was directly connected to the... [Pg.266]

Probably the most common separation systems used in the laboratory today require the sample to be in solution (e.g. HPLC, CE). The solvent may be aqueous or solvent based. However, onemL of such solution yields far too much vapour (1-2L) to be accommodated by a mass spectrometer s vacuum system. Thus the aim of a sample introduction system for such solutions would require the sample to be ionised and the solvent to be separated from these sanple ions. In addition the interface must maintain the integrity of the chromatography. The chromatographic separation must be maintained as well as allowing sufficient analyte through to generate a mass spectmm. A number of methods have been developed to do this, but the two main techniques used today are electrospray and atmospheric pressure chemical ionisation (APCI for short). These are described below under ionisation techniques. [Pg.168]

In atmospheric pressure chemical ionisation (APCI), a corona discharge is used to ionise the analyte in the source of the mass spectrometer [31]. Complementary to ESI, which is especially suitable for charged, basic or polar analytes, APCI can be used for analysis of uncharged or low-polarity compounds (e.g. [Pg.334]

Right from the outset of the 1990s, a selection of those interfaces that could be adapted to a routine LC-MS analysis was observable. This trend had been initiated by pharmacological and pharmaceutical research, although it had the TSP interface at its disposal, which was a well-adapted and reliable type of interface that had shown its fiiU capacity in manifold appliances. The sample material, being available only in very limited quantities for such research, and improved separation techniques, as, for example, capillary electrophoresis (CE) or capillary zone electrophoresis (CZE) necessitated different types of interfaces that could be operated with considerably smaller amounts of sample than the TSP interface, which reached its optimized sensitivity with flow rates of about 2 mL min. Such a desirably lower sample demand is guaranteed by atmospheric pressure ionisation (API) interfaces, atmospheric pressure chemical ionisation (APCI) and electrospray ionisation (ESI) interface. [Pg.759]

Ionisation methods investigated earlier, including thermospray, fast atom bombardment, and particle beam interfaces have been replaced by electrospray imiiza-tion (ESI) interfaces. Atmospheric pressure chemical ionisation (APCI) has also been applied but is less sensitive towards the PANOs. A combination of ESI with reversed-phase HPLC using acid mobile phases to protonate the PA molecules has most often been used [41]. [Pg.1060]


See other pages where Atmospheric Pressure Chemical Ionisation APCI is mentioned: [Pg.378]    [Pg.382]    [Pg.261]    [Pg.386]    [Pg.658]    [Pg.191]    [Pg.283]    [Pg.51]    [Pg.112]    [Pg.114]    [Pg.121]    [Pg.482]    [Pg.19]    [Pg.173]    [Pg.173]    [Pg.749]    [Pg.751]    [Pg.779]    [Pg.106]    [Pg.221]   
See also in sourсe #XX -- [ Pg.40 , Pg.112 , Pg.114 , Pg.120 , Pg.121 , Pg.266 ]

See also in sourсe #XX -- [ Pg.168 ]

See also in sourсe #XX -- [ Pg.106 ]




SEARCH



APCI (

APCI (atmospheric-pressure chemical

Atmospheric pressure chemical

Chemical pressure

Ionisation

Ionised

© 2024 chempedia.info