Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radical polymerization atactic

The nmr spectmm of PVAc iu carbon tetrachloride solution at 110°C shows absorptions at 4.86 5 (pentad) of the methine proton 1.78 5 (triad) of the methylene group and 1.98 5, 1.96 5, and 1.94 5, which are the resonances of the acetate methyls iu isotactic, heterotactic, and syndiotactic triads, respectively. Poly(vinyl acetate) produced by normal free-radical polymerization is completely atactic and noncrystalline. The nmr spectra of ethylene vinyl acetate copolymers have also been obtained (33). The ir spectra of the copolymers of vinyl acetate differ from that of the homopolymer depending on the identity of the comonomers and their proportion. [Pg.463]

In Section 6.21 we listed three main methods for polymerizing alkenes cationic, free-radical, and coordination polymerization. In Section 7.15 we extended our knowledge of polymers to their stereochemical aspects by noting that although free-radical polymerization of propene gives atactic polypropylene, coordination polymerization produces a stereoregulai polymer with superior physical properties. Because the catalysts responsible for coordination polymerization ar e organometallic compounds, we aie now in a position to examine coordination polymerization in more detail, especially with respect to how the catalyst works. [Pg.610]

Polypropylene made by free-radical polymerization is generally atactic , that is to say, there is no pattern to the stereochemistry. On the other hand, both isotactic polypropylene (in which all the stereocenters are the same) and syndiotactic polypropylene (in which the stereocenters alternate) may be made via the Ziegler-Natta process (see Chapter 18, Problem 4). Experimentally, both isotactic and syndiotactic polypropylene generally have higher melting points than atactic polypropylene. [Pg.252]

The configuration of a center in radical polymerization is established in the transition state for addition of the next monomer unit when it is converted to a tetrahedral sp1 center. If the stereochemistry of this center is established at random (Scheme 4.1 km = k,) then a pure atactic chain is formed and the probability of finding a meso dyad, P(m), is 0.5. [Pg.170]

Moreover it has been shown that PV0CC1 prepared by free-radical polymerization of vinyl chloroformate (V0CC1) is an atactic polymer having a Bernouillian statistical distribution as expected (J[9). In order to extend our studies on the chemical modification of PV0CC1, the stereoselective character of the nucleophilic substitution of the chloroformate units with phenol has been examined by the study of the 13c-NMR spectra of partly modified polymers in the region of the aliphatic methine carbon atoms. The results obtained in this field are presented here. [Pg.39]

Polypropylene produced by radical polymerization at high pressure is atactic. [Pg.530]

Since radical polymerizations are generally carried out at moderately high temperatures, most of the resulting polymers are highly atactic. This does not mean that there is a complete absence of syndiotacticity. There is a considerable difference in the extent of syndiotacticity from one polymer to another. Thus, methyl methacrylate has a much greater tendency toward syndiotactic placement than vinyl chloride. Whereas the poly(vinyl chloride) produced at the usual commerical polymerization temperature ( 60°C) is essential completely atactic, that is, (r) (m) 0.5, this is not the case for poly(methyl methacrylate). The polymerization of MMA, usually carried out at temperatures up to 100°C, yields polymers with appreciable syndiotacticity—(r) is 0.73 at 100°C. The difference is a consequence of the fact that MMA is a 1,1-disubstituted ethylene, leading to greater repulsions between substituents in adjacent monomer units. [Pg.639]

There have been efforts to enhance stereoselectivity in radical polymerization by using fluoroalcohols or Lewis acids that complex with monomers such as MMA and vinyl acetate [Isobe et al., 2000, 2001a Okamoto et al., 2002], In almost all instances the effects are nil or very small. For example, the use of perfluoro-t-butyl alcohol as solvent instead of toluene changes (rr) from 0.89 to 0.91 in the polymerization of MMA at —78°C. An exception is in the polymerization of acrylamide in the presence of some rare-earth Lewis acids such as ytterbium triflate. The polymer is atactic at 0°C, (m) = 0.46, in the absence of the Lewis acid, but significantly isotactic, (m) — 0.80, in the presence of the Lewis acid. The reason for this effect is unclear. More highly isoselective polymerization occurs in some radical polymerizations of MMA (Sec. 8-14b). [Pg.639]

Having established that a particular polymerization follows Bemoullian or first-order Markov or catalyst site control behavior tells us about the mechanism by which polymer stereochemistry is determined. The Bemoullian model describes those polymerizations in which the chain end determines stereochemistry, due to interactions between either the last two units in the chain or the last unit in the chain and the entering monomer. This corresponds to the generally accepted mechanism for polymerizations proceeding in a nonco-ordinated manner to give mostly atactic polymer—ionic polymerizations in polar solvents and free-radical polymerizations. Highly isoselective and syndioselective polymerizations follow the catalyst site control model as expected. Some syndioselective polymerizations follow Markov behavior, which is indicative of a more complex form of chain end control. [Pg.712]

The atactic polystyrene is precipitated by dropping the acetone/HCI solution into methanol and it is filtered through a sintered glass crucible the atactic and crystalline portions are dried in vacuum at 50 °C and finally weighed.The X-ray diffraction patterns of the two samples are compared with each other and with that of a polystyrene made by radical polymerization likewise for the IR spectra (see Sects. 2.3.6 and 2.3.9). [Pg.224]

Because of acid-catalyzed hydrolysis of N-vinylpyrrolidone in water, polymerization was carried out in organic solvent - DMF. Three types of samples of poly(methacrylic acid) were used syndiotactic - obtained by radiation polymerization, atactic - obtained by radical polymerization, and isotactic - obtained by hydrolysis of isotactic poly(methyl methacrylate). It was found that in all cases the rate enhancement appeared in comparison with the blank polymerization (without template). The rate enhancement became more pronounced with increasing chain length and syndiotacticity of the template. According to the authors, the rate enhancement is connected with the stronger complex formation between poly(vinyl pyrrolidone) and syndiotactic poly(methacrylic acid) then with isotactic template. This conclusion was supported by turbimetric titration in DMF/DMSO system and by model considerations. It is worth noting, however, that... [Pg.30]

Atactic PVAc prepared in a free-radical polymerization is crosslinked by means of benzoyl peroxide. The resulting elastomertic networks are studied in elongation, both unswollen and swollen with triethylbenzene, over the range 273 - 363 K. The most important experimental results obtained are values of the network birefringence, which is negative. Calculations carried out to interpret the birefringence are based on Monte-Carlo simulations of the atactic structure, and on the RIS theory. [Pg.193]

At present all commercial polystyrene (with average molecular weights between 100,000 and 400,000) is manufactured by radical polymerization, which yields atactic polymers.476 Peroxides and azo compounds are commonly used initiators. The suspension process (usually as a batch process in water at 80-140°C) produces a product with relatively high residual monomer content.223 More important is the continuous solution process (usually in ethylbenzene solvent at 90-180°C), which yields high-purity product. Styrene can be copolymerized with numerous other monomers.477 One of these copolymers, the styrene-divinylbenzene copolymer produced by free-radical polymerization, has a crosslinked stucture and is used in... [Pg.774]

Exercise 29-16 The radical polymerization of ethenylbenzene gives atactic polymer. Explain what this means in terms of the mode of addition of monomer units to the growing-chain radical. [Pg.1450]

TP he free radical polymerization of vinyl and acryl monomers normally does not lead to a true atactic polymer (I). A true atactic polymer is defined in this context as a polymer consisting of 50 isotactic and syndiotactic diads each, 25 iso- and syndiotactic triads each, and 50 heteroactic triads, etc. Furthermore all diads, triads, tetrads, etc., must be distributed at random. [Pg.33]

Poly(vinyl chloride), also known as PVC, is prepared by radical polymerization to produce material composed of an average of 10,000 to 24,000 monomer units. It is atactic and therefore amorphous, but it has a relatively high Tg because of the large size of its molecules and its polar carbon-chlorine bonds. It is a rigid material and is used to make pipe, panels, and molded objects. About 68% of PVC is used in the building and construction industry. A more flexible form of PVC is produced by adding a plasticizer such as dioctyl phthalate. This is used to prepare electric wire coatings, film, and simulated leather or vinyl. ... [Pg.1067]

Polypropylene owes its current market success to the development of coordination polymerization. Before 1957 it was not produced commercially because radical polymerization gives an atactic polymer that is amorphous and has poor mechanical properties. Using a coordination catalyst, however, enables the production of an isotactic polymer that is semicrystalline. This material is stiff and hard and has a high tensile strength. Among its many useful products are rope, molded objects, and furniture. [Pg.1067]

Polystyrene is made by radical polymerization and is atactic and amorphous. Incorporation of small air bubbles produces a foam (Styrofoam) that finds a major use in packaging materials and insulation. [Pg.1067]

Unsubstituted polymer chains cannot form different stereo isomers, while substituted polymers can have a large number of different possible isomeric forms. As a result it is possible to have various configurations for substituted polymers. For example polystyrene produced by radical polymerization is atactic which means the phenyl groups bound to every second C-atom are randomly distributed on both sides of the polymer chain. Polymers produced using Ziegler catalysts, made from monomers like styrene, propene and others are isotactic (Figure 2-2) ... [Pg.19]

Figure 13 shows several optically active vinyl polymers and copolymers with azobenzene or stilbene residues in the side groups. All these polymers were prepared by the conventional radical polymerization, so that the main chains should be atactic or syndiotactic and may not be able to take a helical conformation even in the presence of chiral pendants. The homopolymers (28-31) [83-85]... [Pg.652]

Thus far, we have considered the case for radical polymerization for the conversion of unsaturated monomers into polymer chains. However, none of the aforementioned techniques offer stereoselective control over the growing polymer chain, resulting in purely atactic polymers. In order to gain such control, it is necessary to spatially... [Pg.234]

Before BASF investigated this product, Quirk and Hsieh [1], Yuki and coworkers [2,3] and Fischer [4] carried out investigations with this monomer. The first two used the anionic polymerization mechanism and Fischer tried to copolymerize this monomer using free radical polymerization. In the latter case the yields were very low. The use of S/DPE blocks in thermoplastic elastomers [5] has also been briefly described. Some of the work carried out at BASF has been published in a recent review article [6], Owing to the enhanced thermal properties of this copolymer in comparison with atactic polystyrene - the glass transition temperature increases up to 180 °C, depending... [Pg.581]

Rh138 was almost the same (almost atactic, slightly syndiotactic) as the tacticity of those obtained with conventional radical initiators such as AIBN under similar conditions. The triad ratio of rr.mr.mm as determined by 13C NMR is usually 58 38 4 and does not change even with the use of chiral and/or bulky ligands.103116 These results may exclude a coordination mechanism and suggest a radical nature. However, the stereochemical structure alone is not strong evidence for the radical polymerization because, for example, group-transfer polymerization, basically via an anionic mechanism, results in a stereo structure of PMMA similar to those for free radical processes.263... [Pg.480]

Thirty years later, we discovered the topochemical polymerization of various 1,3-diene monomers giving a highly stereoregular polymer in the form of polymer crystals. When ethyl (Z,Z)-muconatc was photoirradiated in the crystalline state, a tritactic polymer was produced [18, 19], in contrast to the formation of an atactic polymer by conventional radical polymerization in an isotropic state. Thereafter, comprehensive investigation was carried out, for example, the design of monomers, the crystal structure analysis of monomers and polymers, and polymerization reactivity control, in order to reveal the features of the polymerization of 1,3-diene monomers [20-23], Eventually, it was revealed that the solid-state photoreaction... [Pg.177]


See other pages where Radical polymerization atactic is mentioned: [Pg.612]    [Pg.612]    [Pg.81]    [Pg.167]    [Pg.48]    [Pg.331]    [Pg.86]    [Pg.429]    [Pg.637]    [Pg.264]    [Pg.619]    [Pg.430]    [Pg.1064]    [Pg.445]    [Pg.1230]    [Pg.643]    [Pg.137]    [Pg.1154]    [Pg.381]    [Pg.937]    [Pg.14]   
See also in sourсe #XX -- [ Pg.3 , Pg.80 ]

See also in sourсe #XX -- [ Pg.3 , Pg.80 ]




SEARCH



Atacticity

© 2024 chempedia.info