Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Repulsion between

Racah parameters The parameters used to express quantitatively the inter-electronic repulsion between the various energy levels of an atom. Generally expressed as B and C. The ratios between B in a compound and B in the free ion give a measure of the nephelauxetic effect. ... [Pg.339]

The effects of electric fields on monolayer domains graphically illustrates the repulsion between neighboring domains [236,237]. A model by Stone and McConnell for the hydrodynamic coupling between the monolayer and the subphase produces predictions of the rate of shape transitions [115,238]. [Pg.139]

The repulsion between two double layers is important in determining the stability of colloidal particles against coagulation and in setting the thickness of a soap film (see Section VI-5B). The situation for two planar surfaces, separated by a distance 2d, is illustrated in Fig. V-4, where two versus x curves are shown along with the actual potential. [Pg.180]

In the preceding derivation, the repulsion between overlapping double layers has been described by an increase in the osmotic pressure between the two planes. A closely related but more general concept of the disjoining pressure was introduced by Deijaguin [30]. This is defined as the difference between the thermodynamic equilibrium state pressure applied to surfaces separated by a film and the pressure in the bulk phase with which the film is equilibrated (see section VI-5). [Pg.181]

A number of refinements and applications are in the literature. Corrections may be made for discreteness of charge [36] or the excluded volume of the hydrated ions [19, 37]. The effects of surface roughness on the electrical double layer have been treated by several groups [38-41] by means of perturbative expansions and numerical analysis. Several geometries have been treated, including two eccentric spheres such as found in encapsulated proteins or drugs [42], and biconcave disks with elastic membranes to model red blood cells [43]. The double-layer repulsion between two spheres has been a topic of much attention due to its importance in colloidal stability. A new numeri-... [Pg.181]

The repulsion between oil droplets will be more effective in preventing flocculation Ae greater the thickness of the diffuse layer and the greater the value of 0. the surface potential. These two quantities depend oppositely on the electrolyte concentration, however. The total surface potential should increase with electrolyte concentration, since the absolute excess of anions over cations in the oil phase should increase. On the other hand, the half-thickness of the double layer decreases with increasing electrolyte concentration. The plot of emulsion stability versus electrolyte concentration may thus go through a maximum. [Pg.508]

The interest in vesicles as models for cell biomembranes has led to much work on the interactions within and between lipid layers. The primary contributions to vesicle stability and curvature include those familiar to us already, the electrostatic interactions between charged head groups (Chapter V) and the van der Waals interaction between layers (Chapter VI). An additional force due to thermal fluctuations in membranes produces a steric repulsion between membranes known as the Helfrich or undulation interaction. This force has been quantified by Sackmann and co-workers using reflection interference contrast microscopy to monitor vesicles weakly adhering to a solid substrate [78]. Membrane fluctuation forces may influence the interactions between proteins embedded in them [79]. Finally, in balance with these forces, bending elasticity helps determine shape transitions [80], interactions between inclusions [81], aggregation of membrane junctions [82], and unbinding of pinched membranes [83]. Specific interactions between membrane embedded receptors add an additional complication to biomembrane behavior. These have been stud-... [Pg.549]

Because of the charged nature of many Langmuir films, fairly marked effects of changing the pH of the substrate phase are often observed. An obvious case is that of the fatty-acid monolayers these will be ionized on alkaline substrates, and as a result of the repulsion between the charged polar groups, the film reverts to a gaseous or liquid expanded state at a much lower temperature than does the acid form [121]. Also, the surface potential drops since, as illustrated in Fig. XV-13, the presence of nearby counterions introduces a dipole opposite in orientation to that previously present. A similar situation is found with long-chain amines on acid substrates [122]. [Pg.557]

Such attractive forces are relatively weak in comparison to chemisorption energies, and it appears that in chemisorption, repulsion effects may be more important. These can be of two kinds. First, there may be a short-range repulsion affecting nearest-neighbor molecules only, as if the spacing between sites is uncomfortably small for the adsorbate species. A repulsion between the electron clouds of adjacent adsorbed molecules would then give rise to a short-range repulsion, usually represented by an exponential term of the type employed... [Pg.700]

A more dramatic type of restmctiiring occurs with the adsorption of alkali metals onto certain fee metal surfaces [39]. In this case, multilayer composite surfaces are fomied in which the alkali and metal atoms are intemiixed in an ordered stmcture. These stmctiires involve the substitution of alkali atoms into substrate sites, and the details of the stmctiires are found to be coverage-dependent. The stmctiires are influenced by the repulsion between the dipoles fomied by neighbouring alkali adsorbates and by the interactions of the alkalis with the substrate itself [40]. [Pg.299]

Here pyy r ) represents the probability density for finding the 1 electrons at r, and e / mutual Coulomb repulsion between electron density at r and r. ... [Pg.2159]

The ernes of ionic surfactants are usually depressed by tire addition of inert salts. Electrostatic repulsion between headgroups is screened by tire added electrolyte. This screening effectively makes tire surfactants more hydrophobic and tliis increased hydrophobicity induces micellization at lower concentrations. A linear free energy relationship expressing such a salt effect is given by ... [Pg.2583]

Unlike the forces between ions which are electrostatic and without direction, covalent bonds are directed in space. For a simple molecule or covalently bonded ion made up of typical elements the shape is nearly always decided by the number of bonding electron pairs and the number of lone pairs (pairs of electrons not involved in bonding) around the central metal atom, which arrange themselves so as to be as far apart as possible because of electrostatic repulsion between the electron pairs. Table 2.8 shows the essential shape assumed by simple molecules or ions with one central atom X. Carbon is able to form a great many covalently bonded compounds in which there are chains of carbon atoms linked by single covalent bonds. In each case where the carbon atoms are joined to four other atoms the essential orientation around each carbon atom is tetrahedral. [Pg.37]

The very low bond dissociation enthalpy of fluorine is an important factor contributing to the greater reactivity of fluorine. (This low energy may be due to repulsion between non-bonding electrons on the two adjacent fluorine atoms.) The higher hydration and lattice enthalpies of the fluoride ion are due to the smaller size of this ion. [Pg.313]

The Exclusion Prin cip le is t ii an tn ni mechanical in nature, and outside the realm ofeveryday, classical" experience. Think ofii as iheinherent tendency of electron s to slay away from oneanoiher, to be m n tnally excluded. Excbi sion is due to lb c an lisymmdry of the wave function and nol to electrostatic coulomb repulsion between two electrons. Exclusion exists even m the absence of electrostatic repulsions. [Pg.35]

Electrons repel each other electrostatically, and the repulsion between an electron in one atomic orbital and an electron m... [Pg.126]

The first term in eludes the electrostatic attraction s and repulsions between the net charges on pairs of atoms, one from each molecule. The second in volves in teraction s between occupied and vacant molecular orbitals on the two molecules. The hypothesis is that the reaction proceeds in a way to produce the most favorable... [Pg.139]

Tire total energy equals the sum of the nuclear energy (the electrostatic repulsion between the positively charged nuclei) and the electronic energy. The electronic energy comprises... [Pg.55]

The second contribution to the energy arises from the electrostatic repulsion between pairs III electrons. This interaction depends on the electron-electron distance and, as we have seen, is calculated from infegrals such as ... [Pg.69]

Ihc complete neglect of differential overlap (CNDO) approach of Pople, Santry and Segal u as the first method to implement the zero-differential overlap approximation in a practical fashion [Pople et al. 1965]. To overcome the problems of rotational invariance, the two-clectron integrals (/c/c AA), where fi and A are on different atoms A and B, were set equal to. 1 parameter which depends only on the nature of the atoms A and B and the ii ilcniuclear distance, and not on the type of orbital. The parameter can be considered 1.0 be the average electrostatic repulsion between an electron on atom A and an electron on atom B. When both atomic orbitals are on the same atom the parameter is written , A tiiid represents the average electron-electron repulsion between two electrons on an aiom A. [Pg.109]

T he core-core interaction between pairs of nuclei was also changed in MINDO/3 from the fiiriu used in CNDO/2. One way to correct the fundamental problems with CNDO/2 such as Ihe repulsion between two hydrogen atoms (or indeed any neutral molecules) at all di -l.inces is to change the core-core repulsion term from a simple Coulombic expression (/ ., ii = ZaZb/Rab) to ... [Pg.115]


See other pages where Repulsion between is mentioned: [Pg.180]    [Pg.225]    [Pg.247]    [Pg.56]    [Pg.312]    [Pg.467]    [Pg.1692]    [Pg.1800]    [Pg.2364]    [Pg.2368]    [Pg.2369]    [Pg.2377]    [Pg.2393]    [Pg.2588]    [Pg.2835]    [Pg.2885]    [Pg.39]    [Pg.127]    [Pg.150]    [Pg.225]    [Pg.283]    [Pg.293]    [Pg.62]    [Pg.65]    [Pg.117]    [Pg.117]    [Pg.212]    [Pg.224]   


SEARCH



© 2024 chempedia.info