Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Arsenic, analytical

Afton, S., K. Kubachka, B. Catron, et al. 2008. Simultaneous characterization of selenium and arsenic analytes via ion-pairing reversed phase chromatography with inductively coupled plasma and electrospray ionization ion trap mass spectrometry for detection. Applications to river water, plant extract and urine matrices. J. Chromatogr. A 1208 156-163. [Pg.352]

Arsine has been determined colorimetrically or by collection on activated charcoal and flameless AAS analysis by S-229 (12). Nitric acid desorption of the charcoal offers a safe method of handling the arsenic analyte than arsine generation. This method does not specify use of an EDL as does S-309, however, it is advisable if an EDL source is available. [Pg.246]

This book contains conttibutions from world-renowned international scientists on topics that include toxicity of arsenic, analytical methods for determination of arsenic compounds in the environment, health and risk exposure of arsenic, biogeochemical conttols of arsenic, Peatment of arsenic-contaminated water, and microbial ttansformations of arsenic that may be useful in bioremediation. [Pg.400]

A major advantage of this hydride approach lies in the separation of the remaining elements of the analyte solution from the element to be determined. Because the volatile hydrides are swept out of the analyte solution, the latter can be simply diverted to waste and not sent through the plasma flame Itself. Consequently potential interference from. sample-preparation constituents and by-products is reduced to very low levels. For example, a major interference for arsenic analysis arises from ions ArCE having m/z 75,77, which have the same integral m/z value as that of As+ ions themselves. Thus, any chlorides in the analyte solution (for example, from sea water) could produce serious interference in the accurate analysis of arsenic. The option of diverting the used analyte solution away from the plasma flame facilitates accurate, sensitive analysis of isotope concentrations. Inlet systems for generation of volatile hydrides can operate continuously or batchwise. [Pg.99]

Gases and vapors of volatile liquids can be introduced directly into a plasma flame for elemental analysis or for isotope ratio measurements. Some elements can be examined by first converting them chemically into volatile forms, as with the formation of hydrides of arsenic and tellurium. It is important that not too much analyte pass into the flame, as the extra material introduced into the plasma can cause it to become unstable or even to go out altogether, thereby compromising accuracy or continuity of measurement. [Pg.102]

Capillary Electrophoresis. Capillary electrophoresis (ce) or capillary 2one electrophoresis (c2e), a relatively recent addition to the arsenal of analytical techniques (20,21), has also been demonstrated as a powerful chiral separation method. Its high resolution capabiUty and lower sample loading relative to hplc makes it ideal for the separation of minute amounts of components in complex biological mixtures (22,23). [Pg.61]

Arsenic trioxide may be made by burning arsenic in air or by the hydrolysis of an arsenic trihaUde. Commercially, it is obtained by roasting arsenopyrite [1303-18-0] FeAsS. It dissolves in water to a slight extent (1.7 g/100 g water at 25°C) to form a weaMy acidic solution which probably contains the species H AsO, orthoarsenous acid [36465-76-6]. The oxide is amphoteric and hence soluble in acids and bases. It is frequendy used as a primary analytical standard in oxidimetry because it is readily attainable in a high state of purity and is quantitatively oxidized by many reagents commonly used in volumetric analysis, eg, dichromate, nitric acid, hypochlorite, and inon(III). [Pg.334]

Heteropolyacids (HPA) are the unique class of inorganic complexes. They are widely used in different areas of science in biochemistry for the precipitation of albumens and alkaloids, in medicine as anticarcinogenic agents, in industry as catalysts. HPA are well known analytical reagents for determination of phosphoms, silica and arsenic, nitrogen-containing organic compounds, oxidants and reductants in solution etc. [Pg.60]

Spectrophotometric methods based on an enhancement of the blue color produced on reduction of 12-molybdophosphate (arsenate) in the presence of antimony(III) are widely used for the determination of phosphoms(V) or arsenic(V). However, nature of heteropoly blue, their spectra, mechanism of the reaction are obscure. In addition, mixed POMs were shown as very efficient analytical forms for the determination of P(V) and As(V). [Pg.156]

Control of metalloid content in natural objects, foodstuff and pharmaceuticals is an important task for modern analytical chemistry. Determination of elements such as Arsenic is necessary for evaluation of object toxicity, since their content in environment may exceed MCL (maximum contaminant level), posing hazard to human health. Elements such as Selenium in definite doses are healthy, but in greater quantities they produce toxic effect. [Pg.397]

Arsenic III oxide (arsenic trioxide, arsenious oxide) [1327-53-3] M 197.8, three forms m 200°(amorphous glass), m 275°(sealed tube, octahedral, common form, sublimes > 125° without fusion but melts under pressure), m 312°, pKj 9.27, pK 13.54, pK 13.99 (for H3ASO3). Crystd in octahedral form from H2O or from dil HCl (1 2), washed, dried and sublimed (193°/760mm). Analytical reagent grade material is suitable for use as an analytical standard after it has been dried by heating at 105° for l-2h or has been left in a desiccator for several hours over cone H2SO4. POISONOUS (particulary the vapour, handle in a ventilated fume cupboard). [Pg.397]

The SNMS instrumentation that has been most extensively applied and evaluated has been of the electron-gas type, combining ion bombardment by a separate ion beam and by direct plasma-ion bombardment, coupled with postionization by a low-pressure RF plasma. The direct bombardment electron-gas SNMS (or SNMSd) adds a distinctly different capability to the arsenal of thin-film analytical techniques, providing not only matrbe-independent quantitation, but also the excellent depth resolution available from low-energy sputterii. It is from the application of SNMSd that most of the illustrations below are selected. Little is lost in this restriction, since applications of SNMS using the separate bombardment option have been very limited to date. [Pg.575]

Samples Analyzed by Inductively Coupled Plasma (ICP) Metals — Where two or more of the following analytes are requested on the same filter, an ICP analysis may be conducted. However, the Industrial Hygienist should specify the metals of interest in the event samples cannot be analyzed by the ICP method. A computer print-out of the following 13 analytes may be typically reported Antimony, Beryllium, Cadmium, Chromium, Cobalt, Copper, Iron, Lead, Manganese, Molybdenum, Nickel, Vanadium, Zinc. Arsenic — Lead, cadmium, copper, and iron can be analyzed on the same filter with arsenic. [Pg.253]

In addition to these advantages TLC also possesses other merits which ensure that it occupies a firm place in the arsenal of analytical techniques as a method for the separation of micro-, nano- and picogram quantities [5]. [Pg.5]

Method A With arsenic(III) oxide. This procedure, which utilises arsenic(III) oxide as a primary standard and potassium iodide or potassium iodate as a catalyst for the reaction, is convenient in practice and is a trustworthy method for the standardisation of permanganate solutions. Analytical grade arsenic(III) oxide has a purity of at least 99.8 per cent, and the results by this method agree to within 1 part in 3000 with the sodium oxalate procedure (Method B, below). [Pg.370]

The following procedure has been recommended by the Analytical Methods Committee of the Society for Analytical Chemistry for the determination of small amounts of arsenic in organic matter.20 Organic matter is destroyed by wet oxidation, and the arsenic, after extraction with diethylammonium diethyldithiocarbamate in chloroform, is converted into the arsenomolybdate complex the latter is reduced by means of hydrazinium sulphate to a molybdenum blue complex and determined spectrophotometrically at 840 nm and referred to a calibration graph in the usual manner. [Pg.683]

Analytical Methods Committee, Determination of Arsenic in Organic Materials, Society for Analytical Chemistry, London, 1960... [Pg.814]

Fig. 7-6. Enhancement of the intensity of germanium radiation relative to arsenic radiation by selenium. The ordinate in this figure is, for the upper curve, the normalized Ge-As intensity ratio and, for the lower curves, the normalized absolute intensity. The abscissa is the composition of the diluent added to the base material. The relation of analytical lines and absorption edges is shown in IV, Fig. 7-5. Open circles = GeKar/AsKa closed circles = Ge crosses = As. (Courtesy of Adler and Axelrod, Spectrochim. Acta, 7, 91.)... Fig. 7-6. Enhancement of the intensity of germanium radiation relative to arsenic radiation by selenium. The ordinate in this figure is, for the upper curve, the normalized Ge-As intensity ratio and, for the lower curves, the normalized absolute intensity. The abscissa is the composition of the diluent added to the base material. The relation of analytical lines and absorption edges is shown in IV, Fig. 7-5. Open circles = GeKar/AsKa closed circles = Ge crosses = As. (Courtesy of Adler and Axelrod, Spectrochim. Acta, 7, 91.)...
Danckwerts et al. (D6, R4, R5) recently used the absorption of COz in carbonate-bicarbonate buffer solutions containing arsenate as a catalyst in the study of absorption in packed column. The C02 undergoes a pseudo first-order reaction and the reaction rate constant is well defined. Consequently this reaction could prove to be a useful method for determining mass-transfer rates and evaluating the reliability of analytical approaches proposed for the prediction of mass transfer with simultaneous chemical reaction in gas-liquid dispersions. [Pg.302]

An experimental study at 350°C on the interaction between NaCl solution and graywacke which occurs widely in island arc geologic setting indicates that the final solution contains (0.6-0.7) ppm As (Bischoff et al., 1981). Analytical data on As concentration of hydrothermal solution at back-arc basins are few. Arsenic concentration of hydrothermal solution at Lau Basin is 6.0-8.2 ppm (Foquet et al., 1991). We can also estimate As concentration of hydrothermal solution based on the solubility data on orpiment and realgar because these As-bearing minerals are common in back-arc basin deposits (e.g., Okinawa Trough, Kuroko deposits). [Pg.421]

The set of possible dependent properties and independent predictor variables, i.e. the number of possible applications of predictive modelling, is virtually boundless. A major application is in analytical chemistry, specifically the development and application of quantitative predictive calibration models, e.g. for the simultaneous determination of the concentrations of various analytes in a multi-component mixture where one may choose from a large arsenal of spectroscopic methods (e.g. UV, IR, NIR, XRF, NMR). The emerging field of process analysis,... [Pg.349]

Multivariate chemometric techniques have subsequently broadened the arsenal of tools that can be applied in QSAR. These include, among others. Multivariate ANOVA [9], Simplex optimization (Section 26.2.2), cluster analysis (Chapter 30) and various factor analytic methods such as principal components analysis (Chapter 31), discriminant analysis (Section 33.2.2) and canonical correlation analysis (Section 35.3). An advantage of multivariate methods is that they can be applied in... [Pg.384]

The purpose of this monograph, the first to be dedicated exclusively to the analytics of additives in polymers, is to evaluate critically the extensive problemsolving experience in the polymer industry. Although this book is not intended to be a treatise on modem analytical tools in general or on polymer analysis en large, an outline of the principles and characteristics of relevant instrumental techniques (without hands-on details) was deemed necessary to clarify the current state-of-the-art of the analysis of additives in polymers and to accustom the reader to the unavoidable professional nomenclature. The book, which provides an in-depth overview of additive analysis by focusing on a wide array of applications in R D, production, quality control and technical service, reflects the recent explosive development of the field. Rather than being a compendium, cookery book or laboratory manual for qualitative and/or quantitative analysis of specific additives in a variety of commercial polymers, with no limits to impractical academic exoticism (analysis for its own sake), the book focuses on the fundamental characteristics of the arsenal of techniques utilised industrially in direct relation... [Pg.828]

There are no measurements of the actual concentrations of diisopropyl methylphosphonate in groundwater at the RMA during the years of active production of the nerve gas Sarin (i.e., 1953-1957) (EPA 1989). The first actual measurements of the concentration of diisopropyl methylphosphonate in the groundwater on the arsenal and surrounding property to the north and west were made in 1974 (Robson 1981). The concentrations of diisopropyl methylphosphonate in the groundwater ranged from 0.5 g/L (analytical detection limit) to as much as 44,000 g/L near the abandoned waste disposal ponds. Diisopropyl methylphosphonate was discharged into a lined reservoir at the RMA in 1956 and was still present 20 years later in concentrations of about 400,000 g/L (Robson 1977). [Pg.124]


See other pages where Arsenic, analytical is mentioned: [Pg.324]    [Pg.324]    [Pg.1703]    [Pg.1828]    [Pg.543]    [Pg.446]    [Pg.170]    [Pg.349]    [Pg.2206]    [Pg.20]    [Pg.419]    [Pg.69]    [Pg.189]    [Pg.191]    [Pg.156]    [Pg.337]    [Pg.339]    [Pg.21]    [Pg.5]    [Pg.603]    [Pg.120]    [Pg.22]    [Pg.294]    [Pg.95]    [Pg.250]   


SEARCH



© 2024 chempedia.info