Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrolytic properties aqueous solution

Tn the past few years considerable interest has developed in the struc- ture of water in electrolytic solutions (25). This renewed interest is the result of a number of extensive experimental investigations and the realization that many otherwise unexplainable observations can be accounted for if water is considered as a structured medium rather than as a continuum. This paper will consist of a review of some of the more recent advances that have been made in elucidating the factors determining the properties of electrolytes in aqueous solution. Transport properties will be dealt with almost exclusively since the author s main interests lie in that direction. Owing to the unique mechanism of proton conduction in aqueous solution, acids and bases will not be considered and the discussion will be limited exclusively to salt solutions. [Pg.1]

Most of the material in this chapter is quite general, and can be applied to any kind of solution, although most of our examples are for aqueous solutions. The properties of electrolyte solutions introduce complications, discussed in Chapter 15. The properties of real gaseous solutions are often handled by equations of state, the subject of Chapter 13, and those of solid solutions have some unique aspects, discussed in Chapter 14. [Pg.274]

Selective Reduction. In aqueous solution, europium(III) [22541 -18-0] reduction to europium(II) [16910-54-6] is carried out by treatment with amalgams or zinc, or by continuous electrolytic reduction. Photochemical reduction has also been proposed. When reduced to the divalent state, europium exhibits chemical properties similar to the alkaline-earth elements and can be selectively precipitated as a sulfate, for example. This process is highly selective and allows production of high purity europium fromlow europium content solutions (see Calcium compounds Strontiumand strontium compounds). [Pg.544]

Micellar properties are affected by changes in the environment, eg, temperature, solvents, electrolytes, and solubilized components. These changes include compHcated phase changes, viscosity effects, gel formation, and Hquefication of Hquid crystals. Of the simpler changes, high concentrations of water-soluble alcohols in aqueous solution often dissolve micelles and in nonaqueous solvents addition of water frequendy causes a sharp increase in micellar size. [Pg.237]

In this study we examined the influence of concentration conditions, acidity of solutions, and electrolytes inclusions on the liophilic properties of the surfactant-rich phases of polyethoxylated alkylphenols OP-7 and OP-10 at the cloud point temperature. The liophilic properties of micellar phases formed under different conditions were determined by the estimation of effective hydration values and solvatation free energy of methylene and carboxyl groups at cloud-point extraction of aliphatic acids. It was demonstrated that micellar phases formed from the low concentrated aqueous solutions of the surfactant have more hydrophobic properties than the phases resulting from highly concentrated solutions. The influence of media acidity on the liophilic properties of the surfactant phases was also exposed. [Pg.50]

Interest in using ionic liquid (IL) media as alternatives to traditional organic solvents in synthesis [1 ], in liquid/liquid separations from aqueous solutions [5-9], and as liquid electrolytes for electrochemical processes, including electrosynthesis, primarily focus on the unique combination of properties exhibited by ILs that differentiate them from molecular solvents. [Pg.68]

It is important to realise that whilst complete dissociation occurs with strong electrolytes in aqueous solution, this does not mean that the effective concentrations of the ions are identical with their molar concentrations in any solution of the electrolyte if this were the case the variation of the osmotic properties of the solution with dilution could not be accounted for. The variation of colligative, e.g. osmotic, properties with dilution is ascribed to changes in the activity of the ions these are dependent upon the electrical forces between the ions. Expressions for the variations of the activity or of related quantities, applicable to dilute solutions, have also been deduced by the Debye-Hiickel theory. Further consideration of the concept of activity follows in Section 2.5. [Pg.23]

Because of the inherent technical difficulties, investigations of transport properties in molten salts are much less common than those of aqueous solutions. However, interpretation of the phenomena seems to be even simpler in molten salts where water is not involved. Molten salt systems are considered to be the simplest liquid electrolytes. Data have been compiled largely due to the great efforts of the Janz group." "... [Pg.196]

Huizenga, J. R., Grieger, P. F. Wall, F. T. (1950a). Electrolytic properties of aqueous solutions of polyacrylic add and sodium hydroxide. I. Transference experiments using radioactive sodium. Journal of the American Chemical Society, 72, 2636-42. [Pg.87]

Electrolytes are highly important components of all galvanic cells and electrochemical devices. In most electrochemical devices, such as electrolyzers, batteries, and the like, aqueous solutions of acids and salts are used as electrolytes. Aqueous solutions are easy to prepare, convenient to handle, and as a rule are made from readily available, relatively inexpensive materials. By changing the composition and concentration of the components, it is relatively easy to adjust the specific conductance and other physicochemical properties of these aqueous solutions. [Pg.127]

Horvath, A. L., Handbook of Aqueous Electrolyte Solutions, Physical Properties, Estimation and Correlation Methods, Ellis Horwood, Chichester, 1985. [Pg.9]

The species appearing as strong electrolytes in aqueous solutions lose this property in low-permittivity solvents. The ion-pair formation converts them to a sort of weak electrolyte. In solvents of very low-permittivity (dioxan, benzene) even ion triplets and quadruplets are formed. [Pg.34]

Bromley, L. A., "Thermodynamic Properties of Strong Electrolytes in Aqueous Solutions," AIChE J., 1973, 19, 313. [Pg.88]

In principle, this system of 20 equations can be solved provided the equilibrium constants, activities, Henry-constants and fugacities are available. While some results for most of these properties are available, there exists no approved method for calculating activities in concentrated aqueous solutions of weak electrolytes therefore, several approximations were developed. ... [Pg.143]

But before turning to the detailed consideration of electrolytes of moderate concentration, it is interesting to note the properties of a few systems which exist as liquids from pure fused salts to dilute aqueous solutions. [Pg.453]

The techniques used in the critical evaluation and correlation of thermodynamic properties of aqueous polyvalent electrolytes are described. The Electrolyte Data Center is engaged in the correlation of activity and osmotic coefficients, enthalpies of dilution and solution, heat capacities, and ionic equilibrium constants for aqueous salt solutions. [Pg.544]

The PVT properties of aqueous solutions can be determined by direct measurements or estimated using various models for the ionic interactions that occur in electrolyte solutions. In this paper a review will be made of the methods presently being used to determine the density and compressibility of electrolyte solutions. A brief review of high-pressure equations of state used to represent the experimental PVT properties will also be made. Simple additivity methods of estimating the density of mixed electrolyte solutions like seawater and geothermal brines will be presented. The predicted PVT properties for a number of mixed electrolyte solutions are found to be in good agreement with direct measurements. [Pg.581]

The aggregation behavior of C21-DA salt in dilute electrolyte medium appears to resemble that of certain polyhydroxy bile salts (25,16). That C21-DA, with a structure quite different from bile acids, should possess solution properties similar to, e.g., cholic acid is not entirely surprising in light of recent conductivity and surface tension measurements on purified (i.e., essentially monocarboxylate free) disodium salt aqueous solutions, and of film balance studies on acidic substrates (IX) The data in Figure 3 suggest that C21-DA salt micelles Incorporate detergents - up to an approximate weight fraction of 0.5 -much like cholate Incorporates lecithin or soluble... [Pg.120]

The nonideality of electrolyte solntions, cansed nltimately by the electrical fields of the ions present, extends also to any nonelectrolyte that may be present in the aqueous solution. The nonelecttolyte may be a co-solvent that may be added to affect the properties of the solntion (e.g., lower the relative permittivity, e, or increase the solubility of other nonelecttolytes). For example, ethanol may be added to the aqueous solution to increase the solnbility of 8-hydroxyqni-noline in it. The nonelectrolyte considered may also be a reagent that does not dissociate into ions, or one where the dissociation is snppressed by the presence of hydrogen ions at a sufficient concentration (low pH cf Chapter 3), snch as the chelating agent 8-hydroxyquinoline. [Pg.67]


See other pages where Electrolytic properties aqueous solution is mentioned: [Pg.293]    [Pg.484]    [Pg.564]    [Pg.153]    [Pg.237]    [Pg.510]    [Pg.271]    [Pg.348]    [Pg.345]    [Pg.277]    [Pg.123]    [Pg.213]    [Pg.161]    [Pg.547]    [Pg.711]    [Pg.17]    [Pg.427]    [Pg.453]    [Pg.72]    [Pg.18]    [Pg.495]    [Pg.265]    [Pg.179]    [Pg.19]    [Pg.481]    [Pg.569]    [Pg.48]    [Pg.53]    [Pg.336]    [Pg.68]   


SEARCH



Aqueous properties

Aqueous solution properties

Aqueous solutions, electrolytes

Electrolyte properties

Electrolyte solutions

Electrolytes aqueous

Electrolytic properties

Electrolytic solution

Solute property

Solution electrolyte solutes

Solution properties

© 2024 chempedia.info