Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aqueous catalytic activity

Although there are examples of enzymes which maintain their catalytic activity even when ciystallized, they normally work in their natural (i.e., aqueous) environment. This is the reason why the majority of the simulations are carried out applying a technique that accounts for solvent effects. But what is the effect of a solvent ... [Pg.363]

The rate constants for the catalysed Diels-Alder reaction of 2.4g with 2.5 (Table 2.3) demonstrate that the presence of the ionic group in the dienophile does not diminish the accelerating effect of water on the catalysed reaction. Comparison of these rate constants with those for the nonionic dienophiles even seems to indicate a modest extra aqueous rate enhancement of the reaction of 2.4g. It is important to note here that no detailed information has been obtained about the exact structure of the catalytically active species in the oiganic solvents. For example, ion pairing is likely to occur in the organic solvents. [Pg.56]

Enzyme Sta.bihty, Loss of enzyme-catalytic activity may be caused by physical denaturation, eg, high temperature, drying/freezing, etc or by chemical denaturation, eg, acidic or alkaline hydrolysis, proteolysis, oxidation, denaturants such as surfactants or solvents, etc. pH has a strong influence on enzyme stabiHty, and must be adjusted to a range suitable for the particular enzyme. If the enzyme is not sufficiendy stable in aqueous solution, it can be stabilized by certain additives a comprehensive treatment with additional examples is available (27). [Pg.290]

Moehida, I., Kuroda, K., Miyamoto, S., Sotowa, C., Korai, Y., Kawano, S., Sakanishi, K., Yasutake, A. and Yoshikawa, M., Remarkable catalytic activity of calcined pitch-based activated carbon fiber for oxidative removal of SO2 as aqueous HjSO, Energy Fuels, 1997, 11(2), 272 276. [Pg.115]

Figure 5a indicates the effect of the CTAB concentration on the rate constants of the complexes of 38b and 38c. In the case of the water soluble 38b ligand, the rate increases with increasing CTAB concentration up to a saturation level. This type of saturation kinetics is usually interpreted to show the incorporation of a ligand-metal ion complex into a micellar phase from a bulk aqueous phase, and the catalytic activity of the complex is higher in the micellar phase than in the aqueous phase. In the case of lipophilic 38c, a very similar curve as in Fig. 4 is obtained. At a first glance, there appears to be a big difference between these two curves. However, they are rather common in micellar reactions and obey the same reaction mechanism 27). [Pg.158]

It is so universally applied that it may be found in combination with metal oxide cathodes (e.g., HgO, AgO, NiOOH, Mn02), with catalytically active oxygen electrodes, and with inert cathodes using aqueous halide or ferricyanide solutions as active materials ("zinc-flow" or "redox" batteries). The cell (battery) sizes vary from small button cells for hearing aids or watches up to kilowatt-hour modules for electric vehicles (electrotraction). Primary and storage batteries exist in all categories except that of flow-batteries, where only storage types are found. Acidic, neutral, and alkaline electrolytes are used as well. The (simplified) half-cell reaction for the zinc electrode is the same in all electrolytes ... [Pg.199]

Polk et al. reported27 that PET fibers could be hydrolyzed with 5% aqueous sodium hydroxide at 80°C in the presence of trioctylmethylammonium bromide in 60 min to obtain terephthalic acid in 93% yield. The results of catalytic depolymerization of PET without agitation are listed in Table 10.1. The results of catalytic depolymerization of PET with agitation are listed in Table 10.2. As expected, agitation shortened the time required for 100% conversion. Results (Table 10.1) for the quaternary salts with a halide counterion were promising. Phenyltrimethylammonium chloride (PTMAC) was chosen to ascertain whether steric effects would hinder catalytic activity. Bulky alkyl groups of the quaternary ammonium compounds were expected to hinder close approach of the catalyst to the somewhat hidden carbonyl groups of the fiber structure. The results indicate that steric hindrance is not a problem for PET hydrolysis under this set of conditions since the depolymerization results were substantially lower for PTMAC than for die more sterically hindered quaternary salts. [Pg.547]

It must be emphasized, however, that since the Faradaic efficiency A is on the order of 2Fr0/I0, one anticipates to observe NEMCA behaviour only for those systems where there is a measurable open-circuit catalytic activity r0. Consequently the low operating temperatures of aqueous electrochemistry may severely limit the number of reactions where Non-Faradaic A values can be obtained. [Pg.480]

Since the catalytically active phase is frequently quite expensive (e.g. noble metals) it is clear that it is in principle advantageous to prepare catalysts with high, approaching 100%, catalyst dispersion Dc. This can be usually accomplished without much difficulty by impregnating the porous carrier with an aqueous solution of a soluble compound (acid or salt) of the active metal followed by drying, calcination and reduction.1... [Pg.487]

It has been recently found that direct electrical contact, via a metal wire, to the catalyst-electrode is not necessary to induce the effect of electrochemical promotion.8 11 It was found that it suffices to apply the potential, or current, between two terminal electrodes which may, or may not, be catalytically active. The concept appears to be very similar with that of the bipolar design used now routinely in aqueous electrochemistry. [Pg.521]

In these systems, solid enzyme preparations (e.g. lyophilized or immobilized on a support) are suspended in an organic solvent in the presence of enough aqueous buffers to ensure catalytic activity. Although the amount of water added to the solvent (as a rule of thumb <5% v/v) may exceed its solubility in that solvent, a visible discrete aqueous phase is not apparent because part of it is adsorbed by the enzyme. Therefore, the two phases involved in an organic solvent system are a liquid (bulk organic solvent and reagents dissolved in it) and a solid (hydrated enzyme particles). [Pg.7]

An interesting case in the perspective of artificial enzymes for enantioselective synthesis is the recently described peptide dendrimer aldolases [36]. These dendrimers utilize the enamine type I aldolase mechanism, which is found in natural aldolases [37] and antibodies [21].These aldolase dendrimers, for example, L2Dl,have multiple N-terminal proline residues as found in catalytic aldolase peptides [38], and display catalytic activity in aqueous medium under conditions where the small molecule catalysts are inactive (Figure 3.8). As most enzyme models, these dendrimers remain very far from natural enzymes in terms ofboth activity and selectivity, and at present should only be considered in the perspective of fundamental studies. [Pg.71]

Aqueous solutions are not suitable solvents for esterifications and transesterifications, and these reactions are carried out in organic solvents of low polarity [9-12]. However, enzymes are surrounded by a hydration shell or bound water that is required for the retention of structure and catalytic activity [13]. Polar hydrophilic solvents such as DMF, DMSO, acetone, and alcohols (log P<0, where P is the partition coefficient between octanol and water) are incompatible and lead to rapid denaturation. Common solvents for esterifications and transesterifications include alkanes (hexane/log P=3.5), aromatics (toluene/2.5, benzene/2), haloalkanes (CHCI3/2, CH2CI2/I.4), and ethers (diisopropyl ether/1.9, terf-butylmethyl ether/ 0.94, diethyl ether/0.85). Exceptionally stable enzymes such as Candida antarctica lipase B (CAL-B) have been used in more polar solvents (tetrahydrofuran/0.49, acetonitrile/—0.33). Room-temperature ionic liquids [14—17] and supercritical fluids [18] are also good media for a wide range of biotransformations. [Pg.134]

For many solubilized enzymes the greatest catalytic activity and/or changes in conformation are found at R < 12, namely, when the competition for the water in the system between surfactant head groups and biopolymers is strong. This emphasizes the importance of the hydration water surrounding the biopolymer on its reactivity and conformation [13], It has been reported that enzymes incorporated in the aqueous polar core of the reversed micelles are protected against denaturation and that the distribution of some proteins, such as chymotrypsine, ribonuclease, and cytochrome c, is well described by a Poisson distribution. The protein state and reactivity were found markedly different from those observed in bulk aqueous solution [178,179],... [Pg.489]

It has been observed that whereas the catalytic activity of malic dehydrogenase in water is not influenced by pressure, in reversed micelles it shows a bell-shaped dependence, suggesting regulation of the enzymatic activity by pressure application, which cannot be realized in aqueous solutions [180],... [Pg.489]

In this paper we report (i) the catalytic activity for SCR of VOx/Zr02 samples prepared by various methods (adsorption from aqueous metavanadate solutions at different pH values, dry impregnation, and adsorption from VO(acetylacetonate)2 in toluene), (ii) sample characterization (nuclearity, dispersion and oxidation state) by means of XPS, ESR and FTIR and (iii) the nature and reactivity of the surface species observed in the presence of the reactant mixture. Catalytic results are here reported in full. Characterization data relevant to the discussion of the catalytic activity will be given, whereas details on the catalysts preparation and... [Pg.691]

The catalytic lifetime was studied by reusing the aqueous phase for three successive hydrogenation runs of toluene, anisole and cresol. Similar turnover activities were observed during the successive runs. These results show the good stability of the catalytically active iridium suspension as previously described with rhodium nanoparticles. [Pg.273]

Finally, Jessop and coworkers describe an organometalhc approach to prepare in situ rhodium nanoparticles [78]. The stabilizing agent is the surfactant tetrabutylammonium hydrogen sulfate. The hydrogenation of anisole, phenol, p-xylene and ethylbenzoate is performed under biphasic aqueous/supercritical ethane medium at 36 °C and 10 bar H2. The catalytic system is poorly characterized. The authors report the influence of the solubility of the substrates on the catalytic activity, p-xylene was selectively converted to czs-l,4-dimethylcyclohexane (53% versus 26% trans) and 100 TTO are obtained in 62 h for the complete hydrogenation of phenol, which is very soluble in water. [Pg.274]

OS 41a] ]R 19] ]P 30] Ten different substrates (C4-C8 alcohols) were reacted with rhodium(I)-tris(fn-sulfophenyl)phosphane [110]. The variance in conversions (ranging from about 1-62%) determined was explained by differences in the solubility of the alcohols in the aqueous catalytic layer and by their different intrinsic activities. Chain length and steric/electronic effects of the different alcohols affected their reactivity in a well-known pattern (Figure 4.63). The results obtained correspond to the conversions achieved in a well-mixed traditional batch reactor (40 cm ). They further agreed with data from mono-phasic processing. [Pg.473]


See other pages where Aqueous catalytic activity is mentioned: [Pg.92]    [Pg.164]    [Pg.169]    [Pg.44]    [Pg.259]    [Pg.127]    [Pg.290]    [Pg.405]    [Pg.562]    [Pg.192]    [Pg.211]    [Pg.216]    [Pg.362]    [Pg.574]    [Pg.559]    [Pg.192]    [Pg.65]    [Pg.226]    [Pg.99]    [Pg.269]    [Pg.220]    [Pg.278]    [Pg.209]    [Pg.325]    [Pg.691]    [Pg.55]    [Pg.574]    [Pg.49]    [Pg.184]    [Pg.196]    [Pg.197]    [Pg.225]   
See also in sourсe #XX -- [ Pg.914 ]




SEARCH



Activity aqueous

© 2024 chempedia.info