Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Superconductor applications

Since scanning tunneling microscopy requires flat conducting surfaces, it is not surprising that most of its early application was to study inorganic materials [17, 19, 20, 29-34]. These studies include investigations of catalytic metal surfaces [24, 35-37], silicon and other oxides [21], superconductors [38], gold... [Pg.294]

Thus far the importance of carbon cluster chemistry has been in the discovery of new knowl edge Many scientists feel that the earliest industrial applications of the fullerenes will be based on their novel electrical properties Buckminsterfullerene is an insulator but has a high electron affinity and is a superconductor in its reduced form Nanotubes have aroused a great deal of interest for their electrical properties and as potential sources of carbon fibers of great strength... [Pg.437]

Electrical and Electronic Applications. Silver neodecanoate [62804-19-7] has been used in the preparation of a capacitor-end termination composition (110), lead and stannous neodecanoate have been used in circuit-board fabrication (111), and stannous neodecanoate has been used to form patterned semiconductive tin oxide films (112). The silver salt has also been used in the preparation of ceramic superconductors (113). Neodecanoate salts of barium, copper, yttrium, and europium have been used to prepare superconducting films and patterned thin-fHm superconductors. To prepare these materials, the metal salts are deposited on a substrate, then decomposed by heat to give the thin film (114—116) or by a focused beam (electron, ion, or laser) to give the patterned thin film (117,118). The resulting films exhibit superconductivity above Hquid nitrogen temperatures. [Pg.106]

Superconductivity The physical state in which all resistance to the flow of direct-current electricity disappears is defined as superconductivity. The Bardeen-Cooper-Schriefer (BCS) theoiy has been reasonably successful in accounting for most of the basic features observed of the superconducting state for low-temperature superconductors (LTS) operating below 23 K. The advent of the ceramic high-temperature superconductors (HTS) by Bednorz and Miller (Z. Phys. B64, 189, 1989) has called for modifications to existing theories which have not been finahzed to date. The massive interest in the new superconductors that can be cooled with liquid nitrogen is just now beginning to make its way into new applications. [Pg.1127]

A unique application of the solid oxygen electrolytes is in dre preparation of mixed oxides from metal vapour deposits. For example, the ceramic superconductors described below, have been prepared from mixtures of the metal vapours in the appropriate proporhons which are deposited on the surface of a solid electrolyte. Oxygen is pumped tluough the electrolyte by the application of a polarizing potential across the electrolyte to provide the oxidant for the metallic layer which is formed. [Pg.242]

Three common uses of RBS analysis exist quantitative depth profiling, areal concentration measurements (atoms/cm ), and crystal quality and impurity lattice site analysis. Its primary application is quantitative depth profiling of semiconductor thin films and multilayered structures. It is also used to measure contaminants and to study crystal structures, also primarily in semiconductor materials. Other applications include depth profilii of polymers, high-T superconductors, optical coatings, and catalyst particles. ... [Pg.477]

XPS has been used in almost every area in which the properties of surfaces are important. The most prominent areas can be deduced from conferences on surface analysis, especially from ECASIA, which is held every two years. These areas are adhesion, biomaterials, catalysis, ceramics and glasses, corrosion, environmental problems, magnetic materials, metals, micro- and optoelectronics, nanomaterials, polymers and composite materials, superconductors, thin films and coatings, and tribology and wear. The contributions to these conferences are also representative of actual surface-analytical problems and studies [2.33 a,b]. A few examples from the areas mentioned above are given below more comprehensive discussions of the applications of XPS are given elsewhere [1.1,1.3-1.9, 2.34—2.39]. [Pg.23]

In several applications depth profiles were recorded to check the extent of reaction of various materials with superconductors, or to analyze uniformity and concentration during preparation of superconductors. Such investigations have been performed by both XPS and AES. [Pg.30]

NaCl structure, superconductor below 3.5 K), SotAss (defect NaCl structure, superconductor below 1.2K). The many important industrial applications of dilute alloys of As, Sb and Bi with tin and lead were mentioned on pp. 370 and 371. [Pg.557]

Current availability of individual lanthanides (plus Y and La) in a state of high purity and relatively low cost has stimulated research into potential new applications. These are mainly in the field of solid state chemistry and include solid oxide fuel cells, new phosphors and perhaps most significantly high temperature superconductors... [Pg.1232]

The most likely CVD applications of these superconductors to reach the practical stage are coatings for semiconductor and other electronic-related applications. For 1 arger current-carrying applications, a superconductor coating over a metallic conductor such as copper may also become a practical design because of its advantage over a monolithic superconductor wire. It is able to handle current excursions and has better mechanical properties. [Pg.379]

Applications of CVD superconductors now being considered include the following ... [Pg.380]

Thiophenes continue to play a major role in commercial applications as well as basic research. In addition to its aromatic properties that make it a useful replacement for benzene in small molecule syntheses, thiophene is a key element in superconductors, photochemical switches and polymers. The presence of sulfur-containing components (especially thiophene and benzothiophene) in crude petroleum requires development of new catalysts to promote their removal (hydrodesulfurization, HDS) at refineries. Interspersed with these commercial applications, basic research on thiophene has continued to study its role in electrocyclic reactions, newer routes for its formation and substitution and new derivatives of therapeutic potential. New reports of selenophenes and tellurophenes continue to be modest in number. [Pg.77]

The fact that the dielectric constant depends on the frequency gives SPFM an interesting spectroscopic character. Local dielectric spectroscopy, i.e., the study of s(w), can be performed by varying the frequency of the applied bias. Application of this capability in the RF range has been pursued by Xiang et al. in the smdy of metal and superconductor films [39,40] and dielectric materials [41]. In these applications a metallic tip in contact with the surface was used. [Pg.253]

Trains that run on frictionless tracks and computer chips smaller than those of the present generation yet faster and with much larger capacities—these are potential applications of room-temperature superconductors. Research groups around the world are developing new materials in hopes of reaching this spectacular goal. [Pg.783]

For many applications, a superconductor must first be drawn into a wire. This has recently been accomplished. The photo shows a superconductor ribbon wrapped around the copper wires that it could replace. [Pg.785]

R. Chevrel, in Superconductor Materials Sciences Metallurgy, Fabrication and Applications (S. Foner, B.B. Schwarz, eds.), Chap. 10. Plenum Press, 1981. [Pg.253]


See other pages where Superconductor applications is mentioned: [Pg.206]    [Pg.285]    [Pg.162]    [Pg.140]    [Pg.218]    [Pg.545]    [Pg.206]    [Pg.285]    [Pg.162]    [Pg.140]    [Pg.218]    [Pg.545]    [Pg.519]    [Pg.124]    [Pg.224]    [Pg.457]    [Pg.486]    [Pg.634]    [Pg.656]    [Pg.28]    [Pg.927]    [Pg.369]    [Pg.437]    [Pg.315]    [Pg.243]    [Pg.62]    [Pg.206]    [Pg.1]    [Pg.17]    [Pg.30]    [Pg.52]    [Pg.55]    [Pg.141]    [Pg.144]   


SEARCH



Applications of Ceramic Superconductors

Applications of superconductors

Applications, superconductors

Applications, superconductors

Electrochemical applications superconductors

Superconductor device applications

Superconductors high-magnetic-field applications

Superconductors, high medical application

© 2024 chempedia.info