Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Antioxidants mineral compounds

Migration studies should include technological characteristics, leaching antioxidants, monomers and oligomers, plasticisers, mineral compounds... [Pg.60]

There are numerous synthetic and natural compounds called antioxidants which regulate or block oxidative reactions by quenching free radicals or by preventing free-radical formation. Vitamins A, C, and E and the mineral selenium are common antioxidants occurring naturally in foods (104,105). A broad range of flavonoid or phenoHc compounds have been found to be functional antioxidants in numerous test systems (106—108). The antioxidant properties of tea flavonoids have been characterized using models of chemical and biological oxidation reactions. [Pg.373]

SRB contains high-quality protein, oil, dietary fiber, polysaccharides, fat-soluble phytochemicals (plant derived bioactive compounds) and other bran nutrients. Rice bran and germ are the richest natural sources of B complex vitamins as well as E vitamins, polyphenols, several antioxidants and minerals. It is now available in the commercial food ingredient market as a safe and effective functional food and dietary supplement. [Pg.348]

On-line SFE-pSFC-FTIR was used to identify extractable components (additives and monomers) from a variety of nylons [392]. SFE-SFC-FID with 100% C02 and methanol-modified scC02 were used to quantitate the amount of residual caprolactam in a PA6/PA6.6 copolymer. Similarly, the more permeable PS showed various additives (Irganox 1076, phosphite AO, stearic acid - ex Zn-stearate - and mineral oil as a melt flow controller) and low-MW linear and cyclic oligomers in relatively mild SCF extraction conditions [392]. Also, antioxidants in PE have been analysed by means of coupling of SFE-SFC with IR detection [121]. Yang [393] has described SFE-SFC-FTIR for the analysis of polar compounds deposited on polymeric matrices, whereas Ikushima et al. [394] monitored the extraction of higher fatty acid esters. Despite the expectations, SFE-SFC-FTIR hyphenation in on-line additive analysis of polymers has not found widespread industrial use. While applications of SFC-FTIR and SFC-MS to the analysis of additives in polymeric matrices are not abundant, these techniques find wide application in the analysis of food and natural product components [395]. [Pg.479]

Applications The general applications of XRD comprise routine phase identification, quantitative analysis, compositional studies of crystalline solid compounds, texture and residual stress analysis, high-and low-temperature studies, low-angle analysis, films, etc. Single-crystal X-ray diffraction has been used for detailed structural analysis of many pure polymer additives (antioxidants, flame retardants, plasticisers, fillers, pigments and dyes, etc.) and for conformational analysis. A variety of analytical techniques are used to identify and classify different crystal polymorphs, notably XRD, microscopy, DSC, FTIR and NIRS. A comprehensive review of the analytical techniques employed for the analysis of polymorphs has been compiled [324]. The Rietveld method has been used to model a mineral-filled PPS compound [325]. [Pg.645]

Various excellent reviews are available on phenolic compounds, their chemistry and analysis, content in foods and nutritional significance (Bravo, 1998 Dykes and Rooney, 2006 Manach et al., 2004 Naczk and Shahidi, 2006 Robbins, 2003). From a nutritional perspective, phenolic compoimds (especially tannins) are regarded as antinutritional factors due to their ability to form complexes with dietary proteins and minerals and digestive enzymes (Bravo, 1998). However, lately there has been increasing focus on the positive aspects of phenolics due to their ability to act as antioxidants which may offer potential health benefits such as prevention of diseases such as cancer and cardiovascular disease. [Pg.205]

Although zinc dialkyl dithiophosphates, [(RO)2PS2]2Zn, have been used as antioxidants for many years, the detailed mechanism of their action is still not known. However, it is certain that they are efficient peroxide decomposers. The effect of a number of organic sulfur compounds, including a zinc dithiophosphate, on the rate of decomposition of cumene hydroperoxide in white mineral oil at 150°C. was investigated by Kennerly and Patterson (13). Each compound accelerated the hydroperoxide decomposition, the zinc salt being far superior in its activity to the others. Further, in each case the principal decomposition product... [Pg.332]

Citric acid and its citrate compounds are widely used in hundreds of applications. Global production of citric acid in 2005 was 1.6 million tons, with China producing approximately 40% of the world supply. In the United States, approximately 65% of citric acid use is in the food and beverage industry. Citric acid is used as an acidulant to impart tartness, to control pH, as a preservative and antioxidant, as a metal chelator, and to stabilize color and taste. Citrate salts can be used as mineral and metal dietary supplement for example, calcium citrate... [Pg.86]

Marine fishes are rich sources of structurally diverse bioactive compounds including polyunsaturated fatty acids, polysaccharides, minerals, vitamins, antioxidants, enzymes, and bioactive peptides (Kim et ah, 2008). Marine fish-derived ACE inhibitory peptides have been purified from enzymatic digestion of various fish materials from Alaska pollack (Nakajima et ah, 2009), bonito (Fujita et ah, 2000 Hideaki et ah, 1993 Yokoyama et ah,... [Pg.250]

Some non-enzymatic antioxidants play a key role in these defense mechanisms. These are often vitamins (A, C, E, K), minerals (zinc, selenium), caretenoids, organosulfur compounds, allyl sulfide, indoles, antioxidant cofactors (coenzyme Qio)> and polyphenols (flavonoids and phenolic acids) [1,37]. Further, there is good evidence that bilirubin and uric acid can act as antioxidants to help neutralize certain free radicals [38]. Alpha-carotene, lycopene, lutein, and zeaxanthine [39] can be considered subgroups of carotenoids [40] that are effective antioxidant compounds. [Pg.149]

Because minerals are an integral part of many enzymes, they play an important role in food processing, e.g., in alcoholic and lactic fermentation, meat aging, and dairy food production. Many compounds used as food additives or for rheological modification of some foods contain metallic cations in their structure. A number of these compounds function as antimicrobials, sequestrants, antioxidants, flavor enhancers, and buffering agents, and sometimes even as dietary supplements (Table 4.4). [Pg.57]

Components in whole grains that may be protective include antioxidants and trace minerals [62(NC)]. Many of the protective compounds in whole grains (wheat, rice and corn being the main ones) are also found in fruit and vegetables, but some plant compounds are more concentrated in whole grains. [Pg.49]

Sulphur compounds are typically found in some mineral oils and may be added to fuel to serve as antioxidants and biocides for storage and as a lubricant for the fuel injection system. While environmental and transportation requirements have sharply decreased the levels of sulphur compounds in commercial diesel fuel, these compounds can still be found in some fuels intended for off-road or non-commercial applications. [Pg.465]

Molecular sieves arc used in various applications in nuclear medicine. For example, small beads of zeolites were soaked in a solution of radioactive ions. These zeolite beads are employed as point source markers for the identification of anatomical landmarks and for gamma camera uniformity. Due to their small size and relatively high uptake they provide excellent devices for measuring spatial resolution, detector unifonnity and energy resolution.[54] Zeolites are also utilized as binding agents for toxic compounds and antioxidant for selenium, vitamins, and provitamins, and arc also used as mineral additive in various dietary strategies.[55]... [Pg.272]


See other pages where Antioxidants mineral compounds is mentioned: [Pg.657]    [Pg.180]    [Pg.99]    [Pg.256]    [Pg.256]    [Pg.444]    [Pg.368]    [Pg.227]    [Pg.28]    [Pg.97]    [Pg.111]    [Pg.124]    [Pg.212]    [Pg.499]    [Pg.348]    [Pg.256]    [Pg.32]    [Pg.749]    [Pg.256]    [Pg.244]    [Pg.250]    [Pg.136]    [Pg.101]    [Pg.444]    [Pg.281]    [Pg.99]    [Pg.2962]    [Pg.880]    [Pg.4]    [Pg.573]    [Pg.408]    [Pg.117]    [Pg.298]    [Pg.486]    [Pg.99]   
See also in sourсe #XX -- [ Pg.57 , Pg.61 , Pg.62 , Pg.63 ]




SEARCH



Antioxidant compounds

Mineral compounds

Mineralization compounds

© 2024 chempedia.info