Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anionic polymerization star block, polymers

The anionic polymerization of methacrylates using a silyl ketene acetal initiator has been termed group-transfer polymerization (GTP). First reported by Du Pont researchers in 1983 (100), group-transfer polymerization allows the control of methacrylate molecular stmcture typical of living polymers, but can be conveniendy mn at room temperature and above. The use of GTP to prepare block polymers, comb-graft polymers, loop polymers, star polymers, and functional polymers has been reported (100,101). [Pg.269]

Block copolymer chemistry and architecture is well described in polymer textbooks and monographs [40]. The block copolymers of PSA interest consist of anionically polymerized styrene-isoprene or styrene-butadiene diblocks usually terminating with a second styrene block to form an SIS or SBS triblock, or terminating at a central nucleus to form a radial or star polymer (SI) . Representative structures are shown in Fig. 5. For most PSA formulations the softer SIS is preferred over SBS. In many respects, SIS may be treated as a thermoplastic, thermoprocessible natural rubber with a somewhat higher modulus due to filler effect of the polystyrene fraction. Two longer reviews [41,42] of styrenic block copolymer PSAs have been published. [Pg.479]

The purpose of this review is to show how anionic polymerization techniques have successfully contributed to the synthesis of a great variety of tailor-made polymer species Homopolymers of controlled molecular weight, co-functional polymers including macromonomers, cyclic macromolecules, star-shaped polymers and model networks, block copolymers and graft copolymers. [Pg.170]

A combination of anionic and ATRP was employed for the synthesis of (PEO-b-PS) , n = 3, 4 star-block copolymers [148]. 2-Hydroxymethyl-l,3-propanediol was used as the initiator for the synthesis of the 3-arm PEO star. The hydroxyl functions were activated by diphenylmethyl potassium, DPMK in DMSO as the solvent. Only 20% of the stoichiometric quantity of DPMK was used to prevent a very fast polymerization of EO. Employing pentaerythritol as the multifunctional initiator a 4-arm PEO star was obtained. Well-defined products were provided in both cases. The hydroxyl end groups of the star polymers were activated with D PM K and reacted with an excess of 2-bromopropionylbro-mide at room temperature. Using these 2-bromopropionate-ended PEO stars in the presence of CuBr/bpy the ATRP of styrene was conducted in bulk at 100 °C, leading to the synthesis of the star-block copolymers with relatively narrow molecular weight distributions (Scheme 72). [Pg.85]

Hyperbranched polymers have also been prepared via living anionic polymerization. The reaction of poly(4-methylstyrene)-fo-polystyrene lithium with a small amount of divinylbenzene, afforded a star-block copolymer with 4-methylstyrene units in the periphery [200]. The methyl groups were subsequently metalated with s-butyllithium/tetramethylethylenediamine. The produced anions initiated the polymerization of a-methylstyrene (Scheme 109). From the radius of gyration to hydrodynamic radius ratio (0.96-1.1) it was concluded that the second generation polymers behaved like soft spheres. [Pg.123]

Among the two ionic polymerization techniques mentioned above, a living anionic polymerization should show the best possible control of polymer architecture and composition. Mono dispersed homopolymers, complex-block, graft, star, and miktoarm architectures have been accessible primarily by anionic polymerization methods [22]. They have been used to grow polymer brushes from various small particles such as silica gels graphite,carbon black, and flat surfaces [23-26]. Recent results have been reported on living anionic polymerizations on clay [27] and silica nanoparticles [28,29]. [Pg.113]

The goal of producing low cost ( 1—5/lb.) acrylic block, comb, star, and telechelic polymers by GTP and anionic polymerization has not been met. Free radical polymerization of acrylics and other vinyl monomers on the other hand requires little purification of materials, works in water and other protic solvents, and is low cost. Considerable efforts are presently under way therefore to develop controlled free radical polymerization methods. [Pg.27]

Star polymers having several PS branches and only one poly(2-vinyl naphthalene), PVN branch were prepared by Takano et al. using anionic polymerization techniques [31]. Sequential anionic block copolymerization of (4-vinyl-phenyl) dimethylvinylsilane (VS) and VN was employed. The double bonds attached to silicon have to remain unaffected during the polymerization of VS. This was ac-... [Pg.86]

Anionic polymerization of functionalized cyclotrisiloxanes is a good method for the synthesis of well-defined functionalized polysiloxane with control of molecular mass, polydispersion, and density and arrangement of functional groups. These polymers may serve as reactive blocks for the building of macromolecular architectures, such as all-siloxane and organic-siloxane block and graft copolymers, star-, comb- and dendritic-branched copolymers and various polysiloxane-inorganic solid hybrids. [Pg.626]

Other multifunctional initiators include star polymers prepared from initiators via living radical or other living polymerizations. In particular, all of the star polymers via metal-catalyzed living polymerization, by definition, carry a halogen initiating site at the end of each arm, and thus they are potentially all initiators. Thus, star-block copolymers with three polyisobutylene-Mock-PMMA arms and four poly-(THF) -A/oc/F polystyrene or poly(THF)-Woc/c-polysty-rene-Wock-PMMA were synthesized via combination of living cationic and copper-catalyzed living radical polymerizations.381,388 Anionically synthesized star polymers of e-caprolactone and ethylene oxide have... [Pg.500]

A new star—block copolymer architecture, the inverse star—block copolymer, was recently reported.87 These polymers are stars having four polystyrene-/risoprene) copolymers as arms. Two of these arms are connected to the star center by the polystyrene block, whereas the other two are connected through the polyisoprene block. The synthetic procedure is given in Scheme 32. The living diblocks (I) were prepared by anionic polymerization and sequential addition of monomers. A small quantity of THF was used to accelerate the initiation of the polymerization of styrene. The living diblock copolymer (I) was slowly added to a solution of SiCL. The reaction was monitored by SEC on samples with-... [Pg.579]

Anionic polymerization has proven to be a very powerful tool for the synthesis of well-defined macromolecules with complex architectures. Although, until now, only a relatively limited number of such structures with two or thee different components (star block, miktoarm star, graft, a,to-branched, cyclic, hyperbranched, etc. (co)polymers) have been synthesized, the potential of anionic polymerization is unlimited. Fantasy, nature, and other disciplines (i.e., polymer physics, materials science, molecular biology) will direct polymer chemists to novel structures, which will help polymer science to achieve its ultimate goal to design and synthesize polymeric materials with predetermined properties. [Pg.608]


See other pages where Anionic polymerization star block, polymers is mentioned: [Pg.788]    [Pg.16]    [Pg.735]    [Pg.437]    [Pg.141]    [Pg.667]    [Pg.258]    [Pg.63]    [Pg.3]    [Pg.3]    [Pg.437]    [Pg.240]    [Pg.471]    [Pg.168]    [Pg.4]    [Pg.502]    [Pg.572]    [Pg.336]    [Pg.128]    [Pg.162]    [Pg.6]    [Pg.79]    [Pg.4]    [Pg.626]    [Pg.3]    [Pg.153]    [Pg.1]    [Pg.13]    [Pg.16]    [Pg.30]    [Pg.84]    [Pg.106]    [Pg.324]   
See also in sourсe #XX -- [ Pg.21 ]




SEARCH



Anionic block polymers

Block anionic polymerization

Block polymers

Blocking polymers

Polymer anionic

Polymers anionic polymerization

Star polymers

Star-block polymers

© 2024 chempedia.info