Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anionic polymerization electron transfer initiation

Electron-transfer initiation from other radical-anions, such as those formed by reaction of sodium with nonenolizable ketones, azomthines, nitriles, azo and azoxy compounds, has also been studied. In addition to radical-anions, initiation by electron transfer has been observed when one uses certain alkali metals in liquid ammonia. Polymerizations initiated by alkali metals in liquid ammonia proceed by two different mechanisms. In some systems, such as the polymerizations of styrene and methacrylonitrile by potassium, the initiation is due to amide ion formed in the system [Overberger et al., I960]. Such polymerizations are analogous to those initiated by alkali amides. Polymerization in other systems cannot be due to amide ion. Thus, polymerization of methacrylonitrile by lithium in liquid ammonia proceeds at a much faster rate than that initiated by lithium amide in liquid ammonia [Overberger et al., 1959]. The mechanism of polymerization is considered to involve the formation of a solvated electron ... [Pg.415]

Electron-transfer initiation also occurs in heterogeneous polymerizations involving dispersions of an alkali metal in monomer. Initiation involves electron transfer from the metal to monomer followed by dimerization of the monomer radical-anion to form the propagating... [Pg.415]

Anionic polymerization dates back at least to the early part of this century. Indeed, sodium-initiated butadiene polymers were investigated as potential synthetic rubbers many years ago. Unfortunately, the derived, high 1,2 microstructure shows a T, of about 0°C. Electron transfer initiators also were studied by Scott in 1936. [Pg.599]

Copolymerizations initiated by lithium metal should give the same product as produced from lithium alkyls. Usually the radical ends produced by electron transfer initiation have so short a lifetime they can have no influence on the copolymerization. This is true for instance in the copolymerization of isoprene and styrene (50). The product is identical if initiated by lithium metal or by butyllithium. With the styrene-methylmethacrylate system, however, differences are observed (79,80,82). Whereas the butyllithium initiated copolymer contains no styrene at low conversions, the one initiated by lithium metal has a high styrene content if the reaction is carried out in bulk and a moderate one even in tetrahydrofuran. These facts led O Driscoll and Tobolsky (80) to suggest that initiation with lithium occurs by electron exchange and that in this case the radical ends are sufficiently long-lived to produce simultaneous radical and anionic reactions at opposite ends of the chain. Only in certain rather exceptional circumstances would the free radical reaction be of importance. Some of the conditions required have been discussed by Tobolsky and Hartley (111). The anionic reaction should be slow. This is normally true for lithium based catalysts in hydrocarbon solvents. No evidence of appreciable radical participation is observed for initiation by sodium and potassium. The monomers should show a fast radical reaction. If styrene is replaced by isoprene, no isoprene is found in the copolymer for isoprene polymerizes slowly by free radical initiation. Most important of all, initiation should be slow to produce a low steady concentration of radical-anions. An initiator which produces an almost instantaneous and complete electron transfer to monomer produces a high radical concentration which will ensure their rapid mutual termination. [Pg.99]

Interest in anionic polymerization grew enormously following the work of Michael Szwarc in the mid 1950s. He demonstrated that under carefully controlled conditions carbanionic living polymers could be formed using electron transfer initiation. [Pg.665]

Effect of Solvents and Reaction Conditions Synthesis Capabilities Block Copolymers Functional End-Group Polymers Initiation Processes in Anionic Polymerization Initiation by Electron Transfer Initiation by Nucleophilic Attack Mechanism and Kinetics of Homogeneous Anionic Polymerization Polar Media Nonpolar Media... [Pg.51]

Describe and illustrate one-electron transfer initiations of anionic polymerizations and give several examples. [Pg.157]

In subsequent papers Kutal et al reported that they found that ferrocene and ruthenocene (FeCp2 and RuCp2, where Cp is rj -CsHs) complexes will also photoinitiate anionic polymerizations of a-cyanoacrylate. They suggest that the mechanism of initiation by ferrocene is an attack on the monomer and formation of a radical anion through electron transfer... [Pg.88]

The anionic polymerization of 9-vinylanthracene gives only low molecular weight products [342], which agrees with Rembaum s and Eisenberg s results [355]. Stolka et al. [342] found no proof of the proposed [337,355] across-the-ring addition instead, the IR and UV spectra of their polymers indicated the conventional 1,2-addition pattern. 2-Propenyl-l-anthracene could not be polymerized anionically [342], Attempts to initiate polymerizations by means of electron-transfer-type initiators (e.g., sodium naphthalene and sodium biphenyl) were unsuccessful [341,342,353,354], The polymerization of 1-vinylpyrene initiated by electron-transfer initiators showed the characteristics of a living polymer system [356,357], Block copolymers of the AB and ABA type were synthesized with ethylene oxide, styrene and isopropene [357],... [Pg.123]

Anionic polymerizations of vinyl monomers electron transfer initiation 10... [Pg.3]

Single-electron transfer from a borate anion particle to the excited polymethine cation generates a dye radical and an aLkylphenylbotanyl radical. The aLkylphenylbotanyl radical fragments to form an active alkyl radical. It is the alkyl radical particles that initiate the polymerization reactions (101). [Pg.496]

Meanwhile, it was found by Asai and colleagues [48] that tetraphenylphosphonium salts having such anions as Cl, Br , and Bp4 work as photoinitiators for radical polymerization. Based on the initiation effects of changing counteranions, they proposed that a one-electron transfer mechanism is reasonable in these initiation reactions. However, in the case of tetraphenylphosphonium tetrafluoroborate, it cannot be ruled out that direct homolysis of the p-phenyl bond gives the phenyl radical as the initiating species since BF4 is not an easily pho-tooxidizable anion [49]. Therefore, it was assumed that a similar photoexcitable moiety exists in both tetraphenyl phosphonium salts and triphenylphosphonium ylide, which can be written as the following resonance hybrid [17] (Scheme 21) ... [Pg.377]

First, we examined the efficiency of the initiation process. A solution of buthyllithium was added to a THF solution of 7 at -70°C. The color of the solution turned to red immediately and a strong ESR signal was observed with a well separated hyperfme structure. The observed radical species was identified as the anion radical of 2-butyl-l,l,2,2-tetramethyldisilanyl-substituted biphenyl by computational simulation as well as by comparison with the spectra of a model compound. The anion radical should be a product of a single electron transfer (SET) process from buthyllithium to the monomer. Since no polymeric product was obtained under the above-mentioned conditions, the SET process is an undesired side reaction of the initiation and one of the reasons why more higher molecular weight polymer was observed than expected. ... [Pg.289]

These examples demonstrate the well-known process of polymerization initiated by anion-radicals. Our next consideration is devoted to an unusual case of initiation. Intercalation of fullerenes by metals results in the formation of fullerene-metal derivatives. Paramagnetic metallofullerenes (anion-radicals) are the fullerenes doped with endohedral metal. According to calculations and structural studies, LaCs2, for example, contains La in the center of one hexagonal ring of the fuller-ene cage (Akasaka et al. 2000, Nishibori et al. 2000, Nomura et al. 1995). Intrafullerene electron transfer in metallofullerenes is possible (Okazaki et al. 2001). [Pg.358]

Another way to initiate anionic polymerization is by electron transfer. The reaction of sodium with naphthalene gives sodium naphthalene (sodium dihydro-naphthylide) in which the sodium has not replaced a hydrogen atom, but has transferred an electron to the electronic levels of the naphthalene this electron can be transferred to styrene or a-methylstyrene, forming a radical anion ... [Pg.192]

Anionic polymerization Initiated by electron transfer (e.g., sodium-naphthalene and styrene In THF) usually produces two-ended living polymers. Such species belong to a class of compounds called bolaform electrolytes (27) In which two Ions or Ion pairs are linked together by a chain of atoms. Depending on chain length, counterion end solvent, Intramolecular Ionic Interactions can occur which in turn may affect the dissociation of the ion pairs Into free ions or the llgand-lon pair complex formation constants. [Pg.87]

The first results of anionic polymerization (the polymerization of 1,3-butadiene and isoprene induced by sodium and potassium) appeared in the literature in the early twentieth century.168,169 It was not until the pioneering work of Ziegler170 and Szwarc,171 however, that the real nature of the reaction was understood. Styrene derivatives and conjugated dienes are the most suitable unsaturated hydrocarbons for anionic polymerization. They are sufficiently electrophilic toward carbanionic centers and able to form stable carbanions on initiation. Simple alkenes (ethylene, propylene) do not undergo anionic polymerization and form only oligomers. Initiation is achieved by nucleophilic addition of organometallic compounds or via electron transfer reactions. Hydrocarbons (cylohexane, benzene) and ethers (diethyl ether, THF) are usually applied as the solvent in anionic polymerizations. [Pg.740]

Photopolymerization of acrylamide by the uranyl ion is said to be induced by electron transfer or energy transfer of the excited uranyl ion with the monomer (37, 38). Uranyl nitrate can photosensitize the polymerization of /S-propiolactone (39) which is polymerized by cationic or anionic mechanism but not by radical. The initiation mechanism is probably electron transfer from /S-propiolactone to the uranyl ion, producing a cation radical which propagates as a cation. Complex formation of uranyl nitrate with the monomer was confirmed by electronic spectroscopy. Polymerization of /J-propiolactone is also photosensitized by sodium chloroaurate (30). Similar to photosensitization by uranyl nitrate, an election transfer process leading to cationic propagation has been suggested. [Pg.338]

Electrolytic polymerization or electrolytically initiated polymerization, or shortly electro-initiated polymerization or electropolymerization, generally means initiation by the electron transfer processes which occur at the electrodes of an electrolytic cell containing monomer and electrolyte, in that by controlling the electrolysis current it is possible to control the generation of initiating species. Under appropriate conditions it may proceed by a free radical, anionic or cationic mechanism. In addition to the electrolytic addition polymerization, production of polymers through condensation reaction by electrolytic means should also be covered. Examples of each of these propagation mechanisms have now been reported in the literature. [Pg.377]

As described in the previous chapter, in the work on electrolytic polymerization which has appeared in the literature, the active species were formed by an electrode reaction from the compounds added to the reaction system and thus initiated polymerization. However, the possibility has been considered of direct electron transfer from the cathode to monomer or from monomer to the anode forming radical-anion or -cation, followed by initiating polymerization. Polymerization of styrene initiated by an electron has been observed when the monomer was exposed to the electric discharge of a Tesla coil (74), y-radiation (75, 16) and to cathode rays from a generator of the resonant transformer type (77). [Pg.385]

However, there was no confirmation of the view that initiation is due to direct electron transfer, since most of the work on electroinitiated anionic polymerization was carried out with sodium nitrate whose cation had a less positive value of half-wave potential than the monomers used. Exceptionally, polymers were produced by the electrolysis of acrylonitrile solutions in dimethyl formamide and dimethoxysulfoxide in the absence of a salt. [Pg.386]

According to the studies of monomers in the organic glass matrices mentioned so far, the ion radicals formed from solute monomers relate their radiation-induced ionic polymerization to the primary effect of ionizing radiations on matter. It is concievable that the initiating species in the anionic polymerization (caxbanions) are formed by the addition of the monomer molecules to the anion radicals which result from electron transfer from the matrices to the solute monomer. The formation of the cation radicals is necessary also to initiate the cationic polymerization. [Pg.417]

Methacrylonitrile can be polymerized almost instantaneously at —75° in liquid ammonia with lithium metal as initiator (83, 84). It was suggested that initiation occurs by a rapid electron transfer to monomer followed by a fast anionic reaction. Lithium amide produced in the reaction itself is not the initiator for it is a comparatively slow initiator of polymerizations at the temperature used. The polymer ions apparently abstract a proton from ammonia to form lithium amide which then reacts with nitrile groups on the polymer to produce cyclic structures. It is believed that this reaction is slow compared to the polymerization process. [Pg.94]

The use of alkali melals for anionic polymerization of diene monomers is primarily of historical interest. The electron-transfer mechanism of the anionic polymerization of styrenes and 1,3-diencs initiated by alkali metals has been described in detail the dimerization of radical anion intermediates is the important step. [Pg.838]


See other pages where Anionic polymerization electron transfer initiation is mentioned: [Pg.98]    [Pg.2]    [Pg.599]    [Pg.25]    [Pg.5]    [Pg.483]    [Pg.436]    [Pg.76]    [Pg.246]    [Pg.155]    [Pg.487]    [Pg.117]    [Pg.45]    [Pg.48]    [Pg.369]    [Pg.227]    [Pg.423]    [Pg.112]    [Pg.79]    [Pg.321]    [Pg.216]   
See also in sourсe #XX -- [ Pg.76 ]




SEARCH



Anion transfer

Anionic initiation

Anionic initiators

Anionic polymerization initiator

Anionically initiated polymerizations

Anions initiating

Electron anions

Electron transfer polymerization

Electron transfer, initiation

Initiator electron transfer

Initiator polymeric

Initiators anions

© 2024 chempedia.info