Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anionic polymerization alkyllithium initiation

Anionic polymerizations are initiated by strong bases such as alkyllithiums, amides, alkoxides, and hydroxide. For example, methyl 2-cyanopropenoate (methyl -cyanoacrylate) polymerizes rapidly in the presence of even small traces of hydroxide. When spread between two surfaces, it forms a tough, solid film that cements the surfaces together. For this reason, commercial preparations of this monomer are marketed as Super Glue. [Pg.521]

Anionic polymerization of vinyl monomers can be effected with a variety of organometaUic compounds alkyllithium compounds are the most useful class (1,33—35). A variety of simple alkyllithium compounds are available commercially. Most simple alkyllithium compounds are soluble in hydrocarbon solvents such as hexane and cyclohexane and they can be prepared by reaction of the corresponding alkyl chlorides with lithium metal. Methyllithium [917-54-4] and phenyllithium [591-51-5] are available in diethyl ether and cyclohexane—ether solutions, respectively, because they are not soluble in hydrocarbon solvents vinyllithium [917-57-7] and allyllithium [3052-45-7] are also insoluble in hydrocarbon solutions and can only be prepared in ether solutions (38,39). Hydrocarbon-soluble alkyllithium initiators are used directiy to initiate polymerization of styrene and diene monomers quantitatively one unique aspect of hthium-based initiators in hydrocarbon solution is that elastomeric polydienes with high 1,4-microstmcture are obtained (1,24,33—37). Certain alkyllithium compounds can be purified by recrystallization (ethyllithium), sublimation (ethyllithium, /-butyUithium [594-19-4] isopropyllithium [2417-93-8] or distillation (j -butyUithium) (40,41). Unfortunately, / -butyUithium is noncrystaUine and too high boiling to be purified by distiUation (38). Since methyllithium and phenyllithium are crystalline soUds which are insoluble in hydrocarbon solution, they can be precipitated into these solutions and then redissolved in appropriate polar solvents (42,43). OrganometaUic compounds of other alkaU metals are insoluble in hydrocarbon solution and possess negligible vapor pressures as expected for salt-like compounds. [Pg.238]

Commercially, the poly(styrene-Aelastomer-Astyrene) materials are made by anionic polymerization (7,45—47). An alkyllithium initiator (RLi) first reacts with styrene [100-42-5] monomer ... [Pg.14]

Anionic polymerization of 1,3-disilacyclobutanes also is possible. Solid KOH and alkali metal silanolates were mentioned as being effective by Russian authors [18, 19. 20]. However, alkyllithiums, which can initiate polymerization of silacyclobutanes (eq. 8) [21], do not initiate polymerization of 1,3-disilacyclobutanes [18, 22]. The problem is one of steric hindrance. [Pg.27]

The polymerization was carried out in THF under the conditions of high vacuum or argon atmosphere with a catalytic amount of alkyllithium as an initiator. Anionic polymerization of 3a with n-BuLi in THF followed by quenching with ethanol afforded polymer 6 in 56 % yield. The molecular weight distribution of the polymer was determined by gel permeation chromatography (GPC), calibrated by polystyrene standards, with chlorofrom as eluent Mn = 6.1xl0"4, Mw/Mn = 1.3. [Pg.287]

Anionic polymerization can be initiated by a variety of anionic sources such as metal alkoxides, aryls, and alkyls. Alkyllithium initiators are among the most useful, being employed commercially in the polymerization of 1,3-butadiene and isoprene, due to their solubility in hydrocarbon solvents. Initiation involves addition of alkyl anion to monomer... [Pg.17]

The most studied catalyst family of this type are lithium alkyls. With relatively non-bulky substituents, for example nBuLi, the polymerization of MMA is complicated by side reactions.4 0 These may be suppressed if bulkier initiators such as 1,1-diphenylhexyllithium are used,431 especially at low temperature (typically —78 °C), allowing the synthesis of block copolymers.432,433 The addition of bulky lithium alkoxides to alkyllithium initiators also retards the rate of intramolecular cyclization, thus allowing the polymerization temperature to be raised.427 LiCl has been used to similar effect, allowing monodisperse PMMA (Mw/Mn = 1.2) to be prepared at —20 °C.434 Sterically hindered lithium aluminum alkyls have been used at ambient (or higher) temperature to polymerize MMA in a controlled way.435 This process has been termed screened anionic polymerization since the bulky alkyl substituents screen the propagating terminus from side reactions. [Pg.24]

The alkyllithium-initiated, anionic polymerization of vinyl and diene monomers can often be performed without the incursion of spontaneous termination or chain transfer reactions (1). The non-terminating nature of these reactions has provided methods for the synthesis of polymers with predictable molecular weights and narrow molecular weight distributions (2). In addition, these polymerizations generate polymer chains with stable, carbanionic chain ends which, in principle, can be converted into a diverse array of functional end groups using the rich and varied chemistry of organolithium compounds (3). [Pg.139]

Some early polymerizations reported as Ziegler-Natta polymerizations were conventional free-radical, cationic, or anionic polymerizations proceeding with low stereoselectivity. Some Ziegler-Natta initiators contain components that are capable of initiating conventional ionic polymerizations of certain monomers, such as anionic polymerization of methacrylates by alkyllithium and cationic polymerization of vinyl ethers by TiCLt-... [Pg.645]

These efforts coupled with the much earlier work on sodium and lithium initiated polymerizations led to an appreciation of the stereospecificity of the alkyllithium initiators for diene polymerization both industrially and academically. Polymerization of isoprene to a high cis polyisoprene with butyllithium is well known and the details have been well documented 2 Control over polybutadiene structure has also been demonstrated. This report attempts to survey the unique features of anionic polymerization with an emphasis on the chemistry and its commercial applications and is not intended as a comprehensive review. [Pg.390]

Anionic polymerizations initiated with alkyllithium compounds enable us to prepare homopolymers as well as copolymers from diene and vinylaromatic monomers. These polymerization systems are unique in that they have precise control over such polymer properties as composition, microstructure, molecular weight, molecular weight distribution, choice of functional end groups and even copolymer monomer sequence distribution. Attempts have been made in this paper to survey these salient features with respect to their chemistry and commercial applications. [Pg.405]

The latter three are obtained by solution polymerization technique with alkyllithium initiator through the anionic mechanism. For these materials, the analysis of block sequences is also an interesting subject in the area of TLC application. However, because a somewhat different principle has to be applied to achieve separation by the difference in block sequences, this subject will be discussed in a subsequent section (cf. Section IV.2.). [Pg.204]

Lithium and alkyllithiums in aliphatic hydrocarbon solvents are also used to initiate anionic polymerization of 1,3-butadiene and isoprene.120,183-187 As 1,3-butadiene has conjugated double bonds, homopolymerization of this compound can lead to several polymer structures. 1,4 Addition can produce cis-1,4- or tram-1,4-polybutadiene (19, 20). 1,2 Addition results in a polymer backbone with vinyl groups attached to chiral carbon atoms (21). All three spatial arrangements (isotactic, syndiotactic, atactic) discussed for polypropylene (see Section 13.2.4) are possible when polymerization to 1,2-polybutadiene takes place. Besides producing these structures, isoprene can react via 3,4 addition (22) to yield polymers with the three possible tacticites ... [Pg.742]

Simple alkyllithium compounds arc aggregated in solution, in the solid slate, and even in the gas phase. The important differences between the v arious alkyllithium compounds arc their degrees of aggregation in solution and their relative reactivity as initiators for anionic polymerization of... [Pg.838]

The use of alkyllithium initiators which contain functional groups provides a versatile method for the preparation of end functionalized polymers and macromonomers. For a living anionic polymerization, each functionalized initiator molecule produces one macromolecule with the functional group from the initiator residue at one chain end and the active carbanionic propagating species at the other chain end. [Pg.839]

Polymers. The polymers used in the blending experiments were prepared by anionic polymerization using an alkyllithium initiator and a chemical randomizing agent to control monomer sequence, in the manner described by Hsieh and Wofford (3). Randomness was checked in each case by measuring the styrene content as a function of conversion. Table I gives descriptive data for these polymers. [Pg.201]

Haddleton determined the reactivity ratios for copolymerization of MMA with BMA by classical anionic as 1.04 0.81 by alkyllithium/trialkylalu-minum initiation, 1.10 0.72 by GTP, 1.76 0.67 by ATRP, 0.98 1.26 by catalytic chain transfer, 0.75 0.98 by classical free radical, 0.93 1.22 [39]. The difference in reactivity ratios between GTP and classical anionic polymerization seems to indicate GTP is an associative process. However, Jenkins has also measured reactivity ratios for the same pair by GTP and reports different results rMMA=0.44 and rBMA=0.26 [40]. [Pg.19]

SCBs play an important role in the formation of other block copolymers. For example, the relatively less nucleophilic poly(ethylene oxide) oxyanion cannot initiate the polymerization of styrene, which needs a more nucleophilic alkyllithium initiator. To enable the synthesis of multi-block copolymers from various combinations of monomers by anionic mechanisms, it is important to modify the reactivity of the growing anionic chain end of each polymer so as to attack the co-monomer. There have only been a few reports on the polymerization of styrene initiated by an oxyanion (see <2001MM4384> and references cited). Thus, there exists a need for a transitional species that is capable of converting oxyanions into carbanions. In 2000, Kawakami and co-workers came up with the concept of the carbanion pump , in which the ring-strain energy of the SCB is harnessed to convert an oxyanion into a carbanion (Scheme 13) <2000MI527>. [Pg.526]

Medium-c/5 lithium-polybutadiene was first developed by Firestone Tire and Rubber Company in 1955 [86]. Solution polymerization using anionic catalysts is usually based on butyllithium. Alkyllithium initiation does not have the high stereospecificity of the coordination catalysts based on titanium, cobalt, nickel, or neodymium compounds. Polymerization in aliphatic hydrocarbon solvents such as hexane or cyclohexane yields a polymer of about 40 % cis, 50 % trans structure with 10 % 1,2-addition. However, there is no need for higher cis content because a completely amorphous structure is desired for mbber applications the glass transition temperature is determined by the vinyl content. The vinyl content of the polybutadiene can be increased up to 90 % by addition of small amounts of polar substances such as ethers. [Pg.307]

Measurement of reactivity ratios under normal free-radical and CCT polymerization conditions indicates that CCT is a modified free-radical polymerization as expected.434 The reactivity ratios for MMA and butyl methacrylate were used as a mechanistic probe. Reactivity ratios were 1.04 and 0.81 for classical anionic polymerization, 1.10 and 0.72 for alkyllithium/trialkylaluminum initiated polymerization, 1.76 and 0.67 for group transfer polymerization, 0.98 and 1.26 for atom transfer radical polymerization, 0.75 and 0.98 for CCT, and 0.93 and 1.22 for classical free-radical polymerization. These ratios suggest that ATRP and CCT proceed via radical propagation. [Pg.548]

Five experimental criteria have been described for the evaluation of protected, functionalized alkyllithium initiators for anionic polymerization. Several alkoxy- and t-butyldimethylsiloxy-protected, hydroxyl-functionalized initiators have been evaluated using these criteria for the polymerization of styrene, isoprene and butadiene. All of the initiators satisfied the criteria for diene polymerization, but inefficient initiation and broader molecular weight distributions were observed for styrene polymerization, especially in cyclohexane. [Pg.71]

The methodology of living anionic polymerization, especially alkyllithium-initiated polymerization, is very useful for the preparation of chain-end functionalized polymers with well-defined structures (9,10). Since these living polymerizations generate stable, anionic polymer chain ends (P Li ) when all of the monomer has been consumed, post-polymerization reactions with a variety of electrophilic species can be used to generate a diverse array of chain-end functional groups as shown in eq. 1,... [Pg.71]

The usefulness of l-alkoxy- and t-butyldimethylsiloxy-functionalized alkyllithium initiators for anionic polymerization have been evaluated using five experimental criteria. All of these criteria must be satisfied for an initiator to be generally useful. These protected hydroxyl-flmctionalized initiators are all useful for the polymerization of butadiene and styrene monomers. Inefficient initiation of styrene polymerization was observed in cyclohexane, but not in benzene. [Pg.82]

Both the 2,2-diphenyl vinyl and the l-methoxy-l,l-diphenylethyl chain ends are potential endgroups for the anionic polymerization of a variety of monomers by metalation. Our earlier results indicate that quantitative metalation of the 2,2-diphenylvinyl endgroups with alkyllithium cannot be achieved, most likely because of steric hindrance. However, as described recently, the ether cleavage of 1-methoxy-l,l-diphenyl-3,3,5,5-tetramethylhexane or electron transfer to 3,3,5,5-tetra-methyl-l,l-diphenylhex-l-ene by K/Na alloy, Cs or Li led to quantitative metalation resulting in nearly quantitative initiation of the polymerization of methacrylic monomers. Both precursors led to identical (macro)initiators verified by H NMR. These compounds can be considered as models of PIB chain ends formed by LCCP of IB and subsequent end-capping with DPE. The present study deals with the application of this method to the synthesis of different AB and ABA block copolymers by the combination of LCCP and living anionic polymerization. [Pg.123]


See other pages where Anionic polymerization alkyllithium initiation is mentioned: [Pg.238]    [Pg.27]    [Pg.29]    [Pg.33]    [Pg.48]    [Pg.336]    [Pg.113]    [Pg.346]    [Pg.238]    [Pg.238]    [Pg.5]    [Pg.21]    [Pg.502]    [Pg.850]    [Pg.687]    [Pg.14]    [Pg.144]    [Pg.302]    [Pg.5]    [Pg.72]   
See also in sourсe #XX -- [ Pg.336 ]




SEARCH



Alkyllithium

Alkyllithium anionic polymerization initiator

Alkyllithium initiated

Alkyllithium initiator

Alkyllithium polymerization initiators

Alkyllithium polymerizations

Alkyllithiums

Anionic initiation

Anionic initiators

Anionic polymerization initiator

Anionically initiated polymerizations

Anions initiating

Initiator polymeric

Initiators anions

Polymerization alkyllithium-initiated

© 2024 chempedia.info