Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionic convention

When the ionic convention is to be used for writing formulas, the following rules are customarily observed ... [Pg.177]

Ionic Convention Electron Count Covalent Convention Electron Count... [Pg.238]

We will use the convention that considers all ligands as neutral in transition-metal complexes. It is simple and close to reality for most transition metals. The ionic convention is less used, but appropriate for the scandium, lanthanide and actinide... [Pg.23]

The rocksalt stmcture is illustrated in figure Al.3.5. This stmcture represents one of the simplest compound stmctures. Numerous ionic crystals fonn in the rocksalt stmcture, such as sodium chloride (NaCl). The conventional unit cell of the rocksalt stmcture is cubic. There are eight atoms in the conventional cell. For the primitive unit cell, the lattice vectors are the same as FCC. The basis consists of two atoms one at the origin and one displaced by one-half the body diagonal of the conventional cell. [Pg.99]

For very strong acids, it is usually possible to use a solvent of a more conventional kind thus, for example, the acid HBF, tetra fluoroboric acid, is extremely strong, because attachment of the hydrogen to the tetrafluoroborate group BF is essentially ionic, H BF and hence dissociation to an acid is very easy. Hence HBF behaves as a strong acid in, for example, an organic solvent, in which it can be used. [Pg.89]

Thermodynamically, the activity of a single ionic species is an inexact quantity, and a conventional pH scale has been adopted that is defined by reference to specific solutions with assigned pH(5) values. These reference solutions, in conjunction with equation 3, define the pH( of the sample solution. [Pg.464]

Applications. Polymers with small alkyl substituents, particularly (13), are ideal candidates for elastomer formulation because of quite low temperature flexibiUty, hydrolytic and chemical stabiUty, and high temperature stabiUty. The abiUty to readily incorporate other substituents (ia addition to methyl), particularly vinyl groups, should provide for conventional cure sites. In light of the biocompatibiUty of polysdoxanes and P—O- and P—N-substituted polyphosphazenes, poly(alkyl/arylphosphazenes) are also likely to be biocompatible polymers. Therefore, biomedical appHcations can also be envisaged for (3). A third potential appHcation is ia the area of soHd-state batteries. The first steps toward ionic conductivity have been observed with polymers (13) and (15) using lithium and silver salts (78). [Pg.260]

Permeability. Ionic bonding has an important influence on permeabiUty characteristics, especially where oily materials are involved. Acid copolymers are less permeable to natural oils than conventional homopolymers, and this difference increases gready when they are neutralized, as illustrated in Table 4 (6). [Pg.408]

The activity of any ion, a = 7m, where y is the activity coefficient and m is the molaHty (mol solute/kg solvent). Because it is not possible to measure individual ionic activities, a mean ionic activity coefficient, 7, is used to define the activities of all ions in a solution. The convention used in most of the Hterature to report the mean ionic activity coefficients for sulfuric acid is based on the assumption that the acid dissociates completely into hydrogen and sulfate ions. This assumption leads to the foUowing formula for the activity of sulfuric acid. [Pg.572]

These observations were the basis for the proposal that polymers, like ionic crystals, exhibit shock-induced polarization due to mechanically induced defects which are forced into polar configurations with the large acceleration forces within the loading portion of the shock pulse. Such a process was termed a mechanically induced, bond-scission model [79G01] and is somewhat supported by independent observations of the propensity of polymers to be damaged by more conventional mechanical deformation processes. As in the ionic crystals, the mechanically induced, bond-scission model is an example of a catastrophic shock compression model. [Pg.133]

Throughout this section the hydronium ion and hydroxide ion concentrations appear in rate equations. For convenience these are written [H ] and [OH ]. Usually, of course, these quantities have been estimated from a measured pH, so they are conventional activities rather than concentrations. However, our present concern is with the formal analysis of rate equations, and we can conveniently assume that activity coefficients are unity or are at least constant. The basic experimental information is k, the pseudo-first-order rate constant, as a function of pH. Within a senes of such measurements the ionic strength should be held constant. If the pH is maintained constant with a buffer, k should be measured at more than one buffer concentration (but at constant pH) to see if the buffer affects the rate. If such a dependence is observed, the rate constant should be measured at several buffer concentrations and extrapolated to zero buffer to give the correct k for that pH. [Pg.273]

FIGURE 18.28 The structure of cyanocobalamin (top) and simplified structures showing several coenzyme forms of vitamin Bi2- The Co—C bond of 5 -deoxyadenosylcobalamin is predominantly covalent (note the short bond length of 0.205 nm) but with some ionic character. Note that the convention of writing the cobalt atom as Co" " attributes the electrons of the Co—C and Co—N bonds to carbon and nitrogen, respectively. [Pg.598]

U.S. Air Force Academy in 1961. He was an early researcher in the development of low-temperature molten salts as battery electrolytes. At that time low temperature meant close to 100 °C, compared to many hundreds of degrees for conventional molten salts. His work led directly to the chloroaluminate ionic liquids. [Pg.3]

In this context it is important to note that the detection of this land of alkali cation impurity in ionic liquids is not easy with traditional methods for reaction monitoring in ionic liquid synthesis (such as conventional NMR spectroscopy). More specialized procedures are required to quantify the amount of alkali ions in the ionic liquid or the quantitative ratio of organic cation to anion. Quantitative ion chromatography is probably the most powerful tool for this kind of quality analysis. [Pg.27]

While certain TSILs have been developed to pull metals into the IL phase, others have been developed to keep metals in an IL phase. The use of metal complexes dissolved in IL for catalytic reactions has been one of the most fruitful areas of IL research to date. LLowever, these systems still have a tendency to leach dissolved catalyst into the co-solvents used to extract the product of the reaction from the ionic liquid. Consequently, Wasserscheid et al. have pioneered the use of TSILs based upon the dissolution into a conventional IL of metal complexes that incorporate charged phosphine ligands in their stmctures [16-18]. These metal complex ions become an integral part of the ionic medium, and remain there when the reaction products arising from their use are extracted into a co-solvent. Certain of the charged phosphine ions that form the basis of this chemistry (e.g., P(m-C6H4S03 Na )3) are commercially available, while others may be prepared by established phosphine synthetic procedures. [Pg.37]

What constitutes an ionic liquid, as distinct from a molten salt It is generally accepted that ionic liquids have relatively low melting points, ideally below ambient temperature [1, 2]. The distinction is arbitrarily based on the salt exhibiting liquidity at or below a given temperature, often conveniently taken to be 100 °C. However, it is clear from observation that the principle distinction between the materials of interest today as ionic liquids (and more as specifically room-temperature ionic liquids) and conventional molten salts is that ionic liquids contain organic cations rather than inorganic ones. This allows a convenient differentiation without concern that some molten salts may have lower melting points than some ionic liquids . [Pg.41]

To many chemists it may seem daunting to perform reactions in ionic liquids, and the range of ionic liquids or potential ionic liquids available is very large. However, many scientists have found that performing reactions in ionic liquids is straightforward and practical when compared with similar reactions in conventional organic solvents. This is particularly the case when considering reactions nor-... [Pg.174]


See other pages where Ionic convention is mentioned: [Pg.428]    [Pg.272]    [Pg.37]    [Pg.79]    [Pg.428]    [Pg.272]    [Pg.37]    [Pg.79]    [Pg.931]    [Pg.238]    [Pg.435]    [Pg.440]    [Pg.385]    [Pg.378]    [Pg.388]    [Pg.404]    [Pg.407]    [Pg.80]    [Pg.450]    [Pg.474]    [Pg.278]    [Pg.35]    [Pg.80]    [Pg.86]    [Pg.96]    [Pg.113]    [Pg.168]    [Pg.550]    [Pg.641]    [Pg.34]    [Pg.37]    [Pg.39]    [Pg.75]    [Pg.82]    [Pg.100]   
See also in sourсe #XX -- [ Pg.238 ]

See also in sourсe #XX -- [ Pg.37 ]




SEARCH



Conventional electrolytes, ionic liquids

Ionic activity coefficient, conventional

© 2024 chempedia.info