Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Analytical methods linearity

An analytical method vahdation study should include demonstration of the accuracy, precision, specificity, limits of detection and quantitation, linearity, range, and interferences. Additionally, peak resolution, peak tailing, and analyte recovery are important, especially in the case of chromatographic methods (37,38). [Pg.369]

Generally the material response stress versus particle velocity curves in Fig. 8.6 are nonlinear and either a graphical or more complicated analytic method is needed to extract a spall strength, Oj, from the velocity or stress profile. When behavior is nominally linear in the region of interest a characteristic impedance (Z for the window and for the sample) specify material... [Pg.272]

Also, surface reaction systems are certainly a challenging scientific field for the development and application of analytical methods and theories, including recent advances in the area of non-linear dynamics. [Pg.388]

The last formulation 3rields an analytical method for treating optimal flow. There are special types of linear programming problems (e.g.,... [Pg.261]

In dibenzothiophene-S,S-dioxide the S atom is in a ring, and hence more constrained. The yield of SOz in the radiolysis is linear with the dose to about 13 Mrad after which it levels off as in p,p -ditolyI sulfone. However, the yield of S02 in this case is much lower (a factor of 25) than in the case of p,p -ditolyl sulfone (G = 0.002 compared to G = 0.05). This stability of the dibenzothiophene sulfone could be partially due to back reaction to reform the parent sulfone and partially due to more efficient energy delocalization. The expected biphenylene product was not detected due to limitations of the analytical method. Bowmer and O Donnell70 studied the volatile products in y-radiolysis of dialkyl, alkyl aryl and diaryl sulfones. Table 2 gives the radiolytic yields of S02 and of the hydrocarbon products of the alkyl or aryl radicals. The hydrocarbon products are those obtained either by H atom abstraction or by radical combination. The authors69 suggested the mechanism... [Pg.914]

Other features of an analytical method that should be borne in mind are its linear range, which should be as large as possible to allow samples containing a wide range of analyte concentrations to be analysed without further manipulation, and its precision and accuracy. Method development and validation require all of these parameters to be studied and assessed quantitatively. [Pg.269]

Because physicochemical cause-and-effect models are the basis of all measurements, statistics are used to optimize, validate, and calibrate the analytical method, and then interpolate the obtained measurements the models tend to be very simple (i.e., linear) in the concentration interval used. [Pg.10]

Figure 4.9. Product deterioration according to technicians A (left) and B (right) using the same analytical method. Technician A s results are worthless when it comes to judging the product s stability and setting a limit on shelf life. The bold circles indicates the batch 1 result obtained by technician B this turns out to be close to the linear regression established for batch 2, suggesting that the two batches degraded at the same rate. Figure 4.9. Product deterioration according to technicians A (left) and B (right) using the same analytical method. Technician A s results are worthless when it comes to judging the product s stability and setting a limit on shelf life. The bold circles indicates the batch 1 result obtained by technician B this turns out to be close to the linear regression established for batch 2, suggesting that the two batches degraded at the same rate.
Setting An established analytical method consisting of the extraction of a drag and its major metabolite from blood plasma and the subsequent HPLC quantitation was precisely described in a R D report, and was to be transferred to three new labs across international boundaries. (Cf. Section 4.32.) The originator supplied a small amount of drug standard and a number of vials containing frozen blood plasma with the two components in a fixed ratio, at concentrations termed lo, mid, and hi. The report provided for evaluations both in the untransformed (linear/linear depiction)... [Pg.254]

Option (Valid) presents a graph of relative standard deviation (c.o.v.) versus concentration, with the relative residuals superimposed. This gives a clear overview of the performance to be expected from a linear calibration Signal = A + B Concentration, both in terms of (relative) precision and of accuracy, because only a well-behaved analytical method will show most of the residuals to be inside a narrow trumpet -like curve this trumpet is wide at low concentrations and should narrow down to c.o.v. = 5% and rel. CL = 10%, or thereabouts, at medium to high concentrations. Residuals that are not randomly distributed about the horizontal axis point either to the presence of outliers, nonlinearity, or errors in the preparation of standards. [Pg.385]

Currently, nutrient analytical methods development often utilizes the method of standard additions as an intrinsic aspect of the development process. Essentially, the analyte to be measured exists in the matrix to which an identical known pure standard is added. The spiked and non-spiked matrix is extracted and analysed for the nutrient of interest. By spiking at increasing levels the researcher can establish, to some degree of certainty, the recovery and linearity of the standard additions. One can also evaluate data to determine reproducibility, precision, and accuracy. Unfortunately, the method of standard additions does not allow the evaluation of the method at nutrient concentrations less than 100 % of the endogenous level. [Pg.288]

Residue study protocols typically either include quality specifications for analytical procedures or refer to a written analytical method that includes such specifications. The protocol for an LSMBS should also include analytical quality specifications, either directly or by reference to a method. Analytical specifications usually include minimum and maximum recovery of analyte from fortified control samples, minimum number of such fortifications per set of samples, minimum linearity in calibration, minimum stability of response to injection of calibration solutions, and limits of quantitation and of detection. [Pg.239]

The Horwitz relationship agrees with the experience of analysts and has been confirmed in various fields of trace analysis, not only in its qualitative form but also quantitatively. Thompson et al. [2004] have estimated the mathematical form of the Horwitz functiontextscHorwitz function being sH = 0.02 x0,85, or linearized, logs = 0.85 log x. The agreement of this equation is usually good and, therefore, the Horwitz functiontextscHorwitz function is sometimes used as a bench-mark for the performance of analytical methods. For this purpose, the so-called Horrat (Horwitz ratio) has been defined, Horrat = sactuai/sHy by which the actual standard deviation is compared with the estimate of the Horwitz function. Serious deviations... [Pg.207]

The linearity of the detector can be obtained by diluting the analyte stock solution and measuring the associated responses, while the linearity of the analytical method can be determined by making a series of concentrations of the analyte from independent sample preparations (weighing and spiking) [15]. It is also essential that the basic calibration linear curve be obtained by using independent samples, and not by using samples that have been prepared by dilution and injected into HPLC/GC, or spotted on one TLC plate. [Pg.249]

According to USP 28 [1], the range of an analytical method can be defined as the interval between upper and lower levels (in the Pharmaceutical Industry usually a range from 80 to 120% of the target concentrations tested) of the analyte that have been demonstrated to be determined with a acceptable level of precision, accuracy, and linearity. Routine analyses should be conducted in this permitted range. For pharmacokinetic measurements, a wide range should be tested, where the maximum value exceeds the highest expected body fluid concentration, and the minimum value is the QL. [Pg.256]

Sections on matrix algebra, analytic geometry, experimental design, instrument and system calibration, noise, derivatives and their use in data analysis, linearity and nonlinearity are described. Collaborative laboratory studies, using ANOVA, testing for systematic error, ranking tests for collaborative studies, and efficient comparison of two analytical methods are included. Discussion on topics such as the limitations in analytical accuracy and brief introductions to the statistics of spectral searches and the chemometrics of imaging spectroscopy are included. [Pg.556]

In polymer science and technology, linear, branched and crosslinked structures are usually distinguished. For crosslinked polymers, insolubility and lack of fusibility are considered as characteristic properties. However, insoluble polymers are not necessarily covalently crosslinked because insolubility and infusibility may be also caused by extremely high molecular masses, strong inter-molecular interaction via secondary valency forces or by the lack of suitable solvents. For a long time, insolubility was the major obstacle for characterization of crosslinked polymers because it excluded analytical methods applicable to linear and branched macromolecules. In particular, the most important structural characteristic of crosslinked polymers, the crosslink density, could mostly be determined by indirect metho ds only [ 1 ], or was expressed relatively by the fraction of crosslinking monomers used in the synthesis. [Pg.139]

The calibration sensitivity of the analytical method employed is simply determined as the slope of the calibration curve. For example, in the case of methyl paraben, the value of calibration sensitivity obtained was 1.6 mAl I/min///M (Figure 6.22). Analytical sensitivity is defined as the ratio between calibration sensitivity and the value of the standard deviation obtained at each concentration.10 The value of the standard deviation encountered for a concentration of 0.6 //M was 0.1, resulting in an analytical sensitivity for methyl paraben at 0.6 //M of 16 m. II/min///M. As indicated for LOD and LOQ, the values obtained for linearity and sensitivity depend on the analytes employed and the corresponding method and instrumental parameters. For example, Liu et al.9 evaluated the LOD and LOQ for Drug A (released from OROS) for a particular analytical method employing //Pl.C to be 0.5 //g/ml. and 2.0 //g/mL, respectively. [Pg.175]


See other pages where Analytical methods linearity is mentioned: [Pg.775]    [Pg.775]    [Pg.323]    [Pg.340]    [Pg.175]    [Pg.265]    [Pg.43]    [Pg.596]    [Pg.229]    [Pg.141]    [Pg.256]    [Pg.313]    [Pg.83]    [Pg.169]    [Pg.318]    [Pg.463]    [Pg.404]    [Pg.48]    [Pg.415]    [Pg.257]    [Pg.653]    [Pg.383]    [Pg.424]    [Pg.435]    [Pg.439]    [Pg.447]    [Pg.200]    [Pg.107]    [Pg.192]    [Pg.217]    [Pg.18]   
See also in sourсe #XX -- [ Pg.359 ]




SEARCH



Analyte linearity

Linear methods

Linearization method analytical

Linearized methods

© 2024 chempedia.info